簡易檢索 / 詳目顯示

研究生: 陳蒿葦
Chen, Hao-Wei
論文名稱: 雙層薄膜耦合結構附加環型質量之聲音穿透分析:有限元素分析
Sound Transmission of Coupled Membrane-Ring Structure: FE Analysis
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 65
中文關鍵詞: 聲學穿透損失有效質量密度有效體積模數
外文關鍵詞: Acoustic, transmission loss, effective mass density, effective bulk modulus
相關次數: 點閱:70下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的高度發展,生活品質的提升逐漸被重視,其中噪音控制為聲學工程中熱門的主題之一。
    在本篇論文,我們設計了一組結構稱為Coupled membrane-ring structure, 即由雙層薄膜超穎材料附加環型質量形成封閉腔體,當聲音穿透此結構時,對結構所造成之振動,可以產生額外的穿透損失峰值以及比典型薄膜型聲學超穎材料有著更寬廣的聲音衰減頻寬。
    我們不只對聲音穿透損失進行研究,其他如:有效質量密度、有效體積模數、以及結構之體積變化皆有深入探討,所有的數值結果是透過COMSOL Multiphysics 有限元素軟體進行模擬。

    With highly developed technologies, the quality of life is gradually being emphasized. The noise control is one of the popular subjects in acoustic engineering field.
    In this thesis, I design a novel acoustic structure called coupled membrane-ring mass structure. When the sound penetrates to the structure, it can produce an additional transmission loss peak and a wider attenuating range compared to typical membrane-type acoustic metamaterials.
    I not only investigated transmission loss but also so some physical properties including effective mass density, effective bulk modulus and volume change. All the results are simulated by COMSOL Multiphysics finite element software package.

    中文摘要 Ⅰ Abstract Ⅱ Acknowledgment Ⅲ List of Figures Ⅵ List of Tables Ⅹ Nomenclature ⅩⅠ CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation 1 1.2 Literature Reviews 2 1.3 Chapter Outline 3 CHAPTER 2 THEORY 4 2.1 Basic assumptions and definitions 4 2.2 The equation of state 5 2.3 The equation of continuity 6 2.4 Wave equation 7 2.5 The solution of wave equation 9 2.6 Fundamental theory of sound transmission 10 2.7 Eigenmodes analysis of circular membrane 13 CHAPTER 3 FINITE ELEMENT SIMULATIONS 16 3.1 Introduction of COMSOL Multiphysics 16 3.2 Finite Element Modeling and Analysis 16 3.3 Calculation Settings in COMSOL 23 3.3.1 Transmission Loss 23 3.3.2 Effective mass density 25 3.3.3 Volume change 27 3.3.4 Effective bulk modulus 29 CHAPTER 4 NUMERICAL RESULTS 32 4.1 Single layer structure 32 4.1.1 Central mass 32 4.1.2 Ring mass 36 4.2 Coupled membrane structure 38 4.2.1 Central mass 38 4.2.2 Ring mass 46 4.3 Coupled membrane structure-double ring masses 57 CHAPTER 5 Conclusions 61 References 63

    [1] B. Banerjee, Taylor & Francis, Boca Raton. “An Introduction to Metamaterials and Waves in Composites” (2011).
    [2] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and
    dynamic response of membrane-type locally resonance acoustic metamaterials” J.
    Appl. Phys. 108, 114905 (2010).
    [3] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss of
    membrane-type acoustic metamaterials with coaxial ring masses,” J. Appl. Phys.
    110, 124903 (2011).
    [4] Z. Yang, J. Mei, M.Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic
    metamaterials with negative dynamic mass,” Phys. Rev. Lett. 101, 204301 (2008).
    [5] H. H. Huang, C. T. Sun, “Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density,” New J. Phys. 11, 013003 (2009).
    [6] H. H. Huang, C. T. Sun, G. L. Huang, “On the negative effective mass density in
    acoustic metamaterials,” Int. J. Eng. Sci. 47, 610-617 (2009).
    [7] Y. Xiao, J. Wen, X. Wen, “Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators,” J. Sound Vib. 331, 5408-5423 (2012).
    [8] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, “Ultrasonic metamaterials with negative modulus,” Nature Mater. 5, 452-456 (2006).
    [9] Y. H. Jhu, “Sound Transmission of a Circular Membrane with Ring Masses,” M. S. Thesis, National Cheng Kung University, Tainan, Taiwan (2015).
    [10] C. Ding, L. Hao, X. Zhao, “Two-dimensional acoustic metamaterial with negative modulus,” J. Appl. Phys. 108, 074911 (2010).
    [11] M. Yang, G. Ma, Z. Yang, P. Sheng, “Coupled membranes with doubly negative
    mass density and bulk modulus,” Phys. Rev. Lett. 110, 134301 (2013).
    [12] J. Li, C. T. Chan, “Double- negative acoustic metamaterial,” Phys. Rev. E 70,
    055602 (2004).
    [13] J. Mei, Z. Liu, W. Wen, P. Sheng, “Effective dynamic mass density of composites” Phys. Rev. Lett. 96, 24301 (2007).
    [14] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic
    metamaterial with negative density”, Phys. Lett. A373, 4464-4469 (2009).
    [15] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic
    metamaterial with negative modulus”, J. Phys.: Condens. Matter. 21, 175704
    (2009).
    [16] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Composite acoustic medium with simultaneously negative density and modulus”, Phys. Rev. Lett. 104, 054301 (2010).
    [17] Y. Yang, J. Wen, Y. Xiao, X. Wen, and J. Wang, “Theoretical investigation of the
    sound attenuation of membrane-type acoustic metamaterials,” Phys. Lett. A 376,
    1489-1494 (2012).
    [18] H. Tian, X. Wang, Y.-H. Zhou, “Theoretical model and analytical approach for a
    circular membrane-ring structure of locally resonant acoustic metamaterial,” Appl. Phys. A 114, 985-990 (2013).
    [19] C. J. Naify, C. M. Chang, G. McKnight, F. Scheulen, and S. Nutt, “Membrane-
    type metamaterials: “Transmission loss of multi-celled arrays,” J. Appl. Phys. 109, 104902 (2011).
    [20] Y. Zhang, J. Wen, H. Zhao, D. Yu, L. Cai, and X. Wen, “Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells,” J. Appl. Phys., 114, 063515 (2013).
    [21] J. S. Chen, D. W. Kao, “Sound attenuation of membranes loaded with square
    frame-shaped masses,” Math. Prob. Eng. 11, 1740236 (2016).
    [22] Y. H. Chen, “Sound Transmission of Membrane-type Acoustic Metamaterials with Frame Masses,” M. S. Thesis, National Cheng Kung University, Tainan, Taiwan (2014).
    [23] G. C. Ma, “Membrane-type Acoustic Metamaterials”, Thesis, The Hong
    Kong University of Science and Technology, Hong Kong (2012).
    [24] Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders,
    “Fundamentals of Acoustics,” 4th Ed. John Wiley & Sons, Inc. (1999).
    [25] Erwin Kreyszig, “Advanced Engineering Mathmatics,” 10th Ed. John Wiley &
    Sons, Inc. (2011).
    [26] Frank J. Fahy, “Sound and Structural vibration: Radiation, Transmission and
    Response,” Academic Press, London. (1987).
    [27] COMSOL 5.0. Acoustics Module Model Library Manual.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE