簡易檢索 / 詳目顯示

研究生: 謝昱凱
Hsieh, Yu-Kai
論文名稱: 研究藉由瓶型光束泵源在Nd:YVO4雷射中生成低階光學渦流
Research direct generation of a low-order vortex beam in Nd:YVO4 laser pumped by a bottle beam
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 光學渦流軌道角動量軸稜錐透鏡M-square光束品質因子
外文關鍵詞: Optical vortex, orbital angular momentum, axicon, M-square quality factor
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學渦流是一種拉蓋爾-高斯模態的光束並帶有軌道角動量(Orbital angular momentum, OAM) l,在實驗中我們使用由軸稜錐透鏡與透鏡的組合生成瓶型光束(bottle beam),並以它為泵源泵浦在晶體為Nd:YVO4的兩面鏡共振腔系統中成功的在不同泵浦位置下生成l=1~8的光學渦流,並且用重疊積分法的方式模擬,成功驗證出瓶型光束是如何泵浦出各階光學渦流。另外我們除了使用傳統的干涉法來解析光學渦流外,也從物理特性上使用了光束半徑關係的分析法以及M-square光束品質因子的分析法來量化的確認實驗中光學渦流。

    Optical vortex, associated with Laguerre-Gaussian modes having orbital angular momentum(OAM) l. In this thesis, we use an axicon lens with a lens to generate a bottle beam to be a pump source. Tuning the location of laser crystal in the bottle beam, the optical vortex modes from l =1 to 8 were sequentially transformed. using the overlapping integral method to simulate and successfully verified how the bottle beam pumped generate optical vortex of each l. Finally, we use Mach-Zehnder interferometer, variations in real-beam spotsize, M-square quality factor to verify the different l of optical vortex.

    摘要I SUMMARYII 致謝XIII 目錄XIV 圖目錄XVI 表目錄XIX 第1章 序論1 1.1 光學渦流簡介1 1.2 實驗動機與目的5 第2章 原理7 2.1 光學渦流7 2.2 軸稜錐透鏡與瓶型光束10 2.3 M-square光束品質因子18 第3章 實驗架構與量測23 3.1實驗架設與步驟23 3.2瓶型光束量測25 3.3不同腔長下各階渦流光束量測27 第4章 實驗解析與討論36 4.1模擬瓶型光束生成各階光學渦流36 4.2各階光學渦流的物理特性解析45 4.2.1 利用光斑半徑變化關係解析各階光學渦流45 4.2.2 利用M-square光束品質因子解析各階光學渦流50 第5章 結論與未來展望53 5.1結論53 5.2未來展望53 參考資料54

    [1] J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 560-567 (1909).
    [2] R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Physical Review 50, 115-125 (1936).
    [3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Physical Review A 45, 8185-8189 (1992).
    [4] Heng, X.; Gan, J.; Zhang, Z.; Li, J.; Li, M.; Zhao, H.; Qian, Q.; Xu, S.; Yang, Z., All-fiber stable orbital angular momentum beam generation and propagation. Opt. Express 26, 17429-17436 (2018).
    [5] Liu, Z.; Yan, S.; Liu, H.; Chen, X., Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method. Physical Review Letters, 123, 183902 (2019).
    [6] Padgett, M.; Bowman, R., Tweezers with a twist. Nature Photonics,5, 343-348 (2011).
    [7] Yang, L.; Chen, X.; Wang, L.; Hu, Z.; Xin, C.; Hippler, M.; Zhu, W.; Hu, Y.; Li, J.; Wang, Y.; Zhang,L.; Wu, D.; Chu, J., Targeted Single-Cell Therapeutics with Magnetic Tubular Micromotor by One-Step Exposure of Structured Femtosecond Optical Vortices. Advanced Functional Materials, 29, 1905745 (2019).
    [8] Tao, S. H. et al. Fractional optical vortex beam induced rotation of particles. Opt. Express 13, 7726–7731 (2005).
    [9] Zhang, Y. Q. et al. A plasmonic spanner for metal particle manipulation. Sci. Rep. 5, 15446 (2015).
    [10] Chen, L. X., Lei, J. J. & Romero, J. Quantum digital spiral imaging. Light Sci. Appl.3,e153 (2014).
    [11] Tamburini, F. et al. Twisting of light around rotating black holes. Nat. Phys. 7, 195–197 (2011).
    [12] Wei, S. B. et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting. Opt. Express 23, 30143–30148 (2015).
    [13] Kozawa, Y., Matsunaga, D. & Sato, S. Superresolution imaging via super-oscillation focusing of a radially polarized beam. Optica 5, 86–92 (2018).
    [14] M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Optics communications 112, 321-327 (1994).
    [15] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642-1651 (2008).
    [16] M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Optics Communications 96, 123-132 (1993).
    [17] N. Heckenberg, R. McDuff, C. Smith, and A. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992).
    [18] S. Zheng, and J. Wang, “Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings,” Scientific Reports 7, 40781 (2017).
    [19] Chard, S. P.; Shardlow, P. C.; Damzen, M. J., High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design. Applied Physics B , 97, 275 (2009).
    [20] Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S., Direct emission of chirality controllable femtosecond LG01 vortex beam. Applied Physics Letters , 112, 201110 (2018).
    [21] Y. Wu, Z. Wang, S. Chen, A. Shirakwa, K.-i. Ueda, and J. Li, Laser Physics Letters 15, 055804 (2018).
    [22] D. Chen, Y. Miao, H. Fu, H. He, J. Tong, and J. Dong, “High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency,” APL Photonics 4, 106106 (2019).
    [23] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Physical review letters 88, 257901 (2002).
    [24] H. I. Sztul, and R. R. Alfano, “Double-slit interference with Laguerre-Gaussian beams,” Opt. Lett. 31, 999-1001 (2006).
    [25] Y.-Y. Lin, C.-C. Yeh, H.-C. Lee, S.-L. Yang, J.-H. Tu, and C.-P. Tang, “Optical vortex lasers by the coherent superposition of off-axis multiple-pass transverse modes in an azimuthal symmetry breaking laser resonator,” Journal of Optics 20, 075203 (2018).
    [26] M. Padgett, and L. Allen, “Orbital angular momentum exchange in cylindrical-lens mode converters,” Journal of Optics B: Quantum and Semiclassical Optics 4, S17 (2002).
    [27] A. Volyar, M. Bretsko, Y. Akimova, and Y. Egorov, “Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens,” Applied Optics 58, 5748-5755 (2019).
    [28] Siegman, Defining, measuring, and optimizing laser beam quality (SPIE, 1993).
    [29] M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Optics communications 248, 7-14 (2005)
    [30] Zhang, J.; Huang, S.-J.; Zhu, F.-Q.; Shao, W.; Chen, M.-S., Dimensional properties of Laguerre&-Gaussian vortex beams. Appl. Opt. 56, 3556-3561(2017).
    [31] M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Physics today 57, 35-40 (2004).
    [32] S. Qiu, T. Liu, Z. Li, C. Wang, Y. Ren, Q. Shao, and C. Xing, “Influence of lateral misalignment on the optical rotational Doppler effect,” Applied Optics 58, 2650-2655 (2019).
    [33] J. Durnin, J. Miceli Jr, and J. Eberly, “Diffraction-free beams,” Physical review letters 58, 1499 (1987).
    [34] X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Applied Optics 54, 10641-10649 (2015).
    [35] S. Chávez-Cerda, and G. New, “Evolution of focused Hankel waves and Bessel beams,” Optics communications 181, 369-377 (2000).
    [36] Wei, M.-D., Generation of bottle beam by focusing a super-Gaussian beam using a lens and an axicon. Optics Communications. 277, 19-23 (2007).
    [37] P. W. Epperlein, Semiconductor laser engineering, reliability and diagnostics: a practical approach to high power and single mode devices (John Wiley & Sons, 2013).
    [38] M. Eichhorn, Laser physics: from principles to practical work in the lab (Springer Science & Business Media, 2014).
    [39] A. Siegman, New developments in laser resonators (SPIE, 1990).
    [40] Phillips, R. L.; Andrews, L. C., Spot size and divergence for Laguerre Gaussian beams of any order. Appl. Opt. 22, 643-644 (1983).
    [41] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980)
    [42] Hanna, D. C.; Large, A. C.; Shepherd, D. P.; Tropper, A. C.; Chartier, I.; Ferrand, B.; Pelenc,D., Aside-pumped Nd:YAG epitaxial waveguide laser. Optics Communications. 91, 229-235 (1992).
    [43] Laporta, P.; Brussard, M., Design criteria for mode size optimization in diode-pumped solid-state lasers. IEEE Journal of Quantum Electronics. 27, 2319-2326(1991).
    [44] Neto, A. M.; Victorino, A. C.; Fantoni, I.; Zampieri, D. E.; Ferreira, J. V.; Lima, D. A. In Image processing using Pearson's correlation coefficient: Applications on autonomous robotics, 2013 13th International Conference on Autonomous Robot Systems, 24-24, pp 1-6(2013).

    無法下載圖示 校內:2026-01-17公開
    校外:2026-01-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE