| 研究生: |
張翰文 Chang, Han-Wen |
|---|---|
| 論文名稱: |
Mg-Al-Zn系合金共振破壞之Al含量效應 Effect of Aluminum Content on the Resonant Vibration Fracture Characteristics of Mg-Al-Zn Alloys |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 制振性 、鎂合金 、鋁含量 、退火 、共振破壞 、形變雙晶 |
| 外文關鍵詞: | damping, resonant vibration fraction, deformation twin, annealing, Al content, magnesium alloys |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究進行Mg-xAl-Zn (x=3, 6, 9 wt %)合金擠形材之振動破壞特性探討。研究內容包括(1)探討Al含量對振動破壞特性,包括制振性及裂縫傳播。(2)利用退火處理,探討擠形態跟經退火材間性質的差異。
實驗結果顯示,在固定振動出力值時,試片起始偏移量與對數衰減率成反比趨勢,也就是當對數衰減率愈大時起始偏移量愈低,擠形態以AZ61-F制振性最好,經退火後則是AZ91-O最佳。共振壽命方面,擠形態之共振壽命隨鋁含量的添加而逐步減少,以AZ31-F為最佳;另一方面,退火材之共振壽命則是隨鋁含量的添加成上升趨勢,以AZ91-O壽命最好。此外,固定退火材之起始偏移量振動實驗結果顯示,在屏除制振性影響下,共振壽命趨勢與固定振動出力值一樣,亦以AZ91-O為最佳。
試片經振動變形後表面主要之變形組織為形變雙晶的生成,其生成量在各成份與處理狀態下有很大差異。擠形態中各組成形變雙晶生成量差異不大,表示振動雙晶的生成受制於原先存在之形變雙晶與介在物,另一方面,雙晶的生成量於退火材中隨鋁含量上升而增加。本研究證實,基地鋁含量的提高有助於振動雙晶的形成,以及共振性質的提升。
Effects of Al content (3~9wt%) on the resonant vibration fracture properties of extruded Mg-Al-Zn alloys were examined in this study. The study items were to investigate (a) the influences of Al content on the resonant vibration behaviors, including damping capacity and crack growth, and (b) differences in the properties between the as-extruded (F samples) and fully-annealed (O samples) materials.
Experimental results indicate that under constant force conditions a greater damping capacity leads to a smaller initial deflection. The AZ61-F specimens exhibit the highest damping capacity among as-extruded materials, but AZ91-O specimens become the one with greater damping capacity after full annealing.
Furthermore, low Al (AZ31-F) as-extruded samples show a greater vibration life under constant force conditions while high Al fully-annealed samples (AZ91-O) possess greater vibration fracture resistance under both constant force and initial-deflection conditions.
The main deformation mechanism of Mg-Zn-Al alloys suffering vibration can be considered as twining. It can be also found that twining during vibration is stunted by pre-existed deformation twins and precipitates. Also, the formation of the twins can be enhanced by an increase in the Al content of the matrix, and thus the vibtation fracture properties, including damping capacity and vibration life can also be improved.
1. I. J. Polmear,“Recent Development in Light Alloys”, Mater. Trans., JIM, Vol. 37(1), 1996, pp. 12-31。
2. I. J. Polmear,“Magnesium Alloys and Applications”, Mater. Sci. Technol., Vol. 10(1), 1994, pp. 1-15.
3. Z. Zhang, A. Couture and A. Luo,“An Investigation of the Properties of Mg-Zn-Al Alloys”, Scripta Mater., Vol. 39(1), 1998, pp. 45-53.
4. 陳錦修,“鎂合金在汽車工業之應用”,工業材料雜誌,91年6月,186期,148-152頁。
5. 陳文棠,“我國筆記型電腦產業發展現況與未來展望”,工業雜誌,91年6月,186期,86-98頁。
6. E. Aghion, B. Bronfin and D. Eliezer, “The role of magnesium industry in protecting enviroment”, Journal of Materials Processing Technology, 2001, Vol. 117, pp.381-385.
7. Michael M. Avedesian and Noranda Magnesium Inc., ASM Specialty Handbook, “Magnesium and Magnesium Alloys”, publish by The Materials Information Society, pp. 14-15.
8. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp. 4-160.
9. 振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
10. A. Granato K. Lucke,“Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., 1956, Vol. 27, pp. 583-593.
11. S. E. Urreta De Pereyre, A. A. Ghilarducci De Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol., 1993, Vol. 139, pp. 345-360.
12. J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Meterials”, J. Mater. Sci., 1993, Vol.28, pp.2395-2404.
13. R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., 1993, Vol.24A, pp.701-711.
14. E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix Composites”, Metall. Mater. Trans., 1995, Vol.26A, pp.2803-2818.
15. M. Okabe, T. Mori and T. Mura, “Internal Friction caused By Diffusion Around a Second-Phase Particle Al-Si Alloy”, Phil. Mag. A, 1981, Vol.44, pp.1-12.
16. A. Wolfenden, L. S. Cook, J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”,M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V. K. Kinra and A. Wolfenden Eds., American Society for Testing and Materials Philadelphia, 1992, pp.124-141.
17. 洪佳和,“亞共晶鋁-矽(-鎂)合金支共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
18. S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach,“Nonstructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., 1993, Vol. 8, pp. 2216-2223.
19. S. M. McGuire, M. E. Fine and J. D. Achenbach,“Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, 1995, Vol. 25A, pp. 1123-1127.
20. Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, 1989, pp.71-91.
21. Fatigue of Materials, S. Suresh, Cambridge University Press. New York, 1991, pp. 292.
22. S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., 1983, Vol.14A, pp. 2375-2385.
23. W. Elber, “Fatigue-Crack Closure under Cyclic Tension”,Eng. Fract. Mech., 1971, Vol.2 , pp. 37-45.
24. S. H. Wang, C. Muller and H. E. Exner, “A Model for Roughness-Induced Fatigue Crack Closure”, Metall. Mater. Trans A, 1998, Vol.29A, pp.1933-1939.
25. S. Suresh,“Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models”, Metall. Trans. A, 1985, Vol.16A, pp. 249-260.
26. W. J. Drury, A. M. Gokhale and S. D. Antolovich,“Effect of Crack Surface Geometry on Fatigue Crack Closure”, Metall. Trans. A, 1995, Vol.26A, pp. 2651-2663.
27. Charlie R. Brooks,“Heat Treatment, Structure and Properties of Nonferrous Alloys”, 1982, 1st, 巨擘書局.
28. R. E. Smallman,“Modern Physical Metallurgy”, Butterworth & Co Ltd, 1985, 4th, pp. 376-378.
29. J. D. Verhoeven,“Fundamentals of Physical Metallurgy”,1974, pp. 460.
30. R. E. Reed-Hill,“Physical Metallurgy Principles”, 1992, 3rd, publish by An International Thomson Publishing Company.
31. Burke and Turnbull,“Progress in Metal Physics”, courtesy of Pergamon Press, 1952.
32. M. H. YOO,“Slip, Twinning and Fracture in Hexagonal-Close- Packed Metals”, Metallurgical Transactions A, 1981, Vol. 12A, pp. 409-418.
33. Teng-Shih Shih,“Fatigue of as- extruded AZ61A magnesium alloy”, Materials Science and Engineering A325(2002) , pp. 152-162.
34. G. Eisenmerier,“Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91”, Materials Science and Engineering A319-321(2001), pp. 578-582.
35. 李信委,“AZ31B鎂合金室溫至500°C之拉伸性質與其變形組織探討”,國立成功大學材料科學及工程學系,碩士論文,民國91年。
36. A. Serra, D. J. Bacon and R. C. Pond,“The Crystallography and Core Structure of Twinning Dislocations in H.C.P. Metals”, Acta Metall., 1988, Vol. 36, No. 12, pp.3183-3203.
37. Y. Z. Lu, Q. D. Wang, W. J. Ding, X. Q. Zeng and Y. P. Zhu,“Fracture behavior of AZ91 magnesium alloy”, Materials Letters, 2000, Vol. 44, pp. 265-268.
38. A. Serra, D. J. Bacon and R. C. Pond,“Twins as Barriers to Basal Slip in Hexagonal-Close-Packed Metals”, Metallurgical and Materials Transactions A, 2002, Vol. 33A, pp.809-812.
39. G. V. Raynor,“Physical Metallurgy of Magnesium and It`s alloys”, 1954, pp. 73-195.
40. J. B. Clark, “AGE HARDENING IN A MG-9 WT.% AL ALLOY”, Acta Metallurgica, 1968, Vol. 16, PP. 141-152.