| 研究生: |
陳傳祺 Chen, Chuan-Chi |
|---|---|
| 論文名稱: |
壓印圖案導引鋁陽極化模板孔洞成長特性之影響 Effect of Pretexturing on the Anodization Behavior of Al |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 多孔質氧化鋁 、陽極化 、壓印 |
| 外文關鍵詞: | self-repair, pretexture, Porous Anodic Alumina, anodization, imprinting |
| 相關次數: | 點閱:141 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陽極氧化鋁模板(AAO)具有規則排列、準直並高深寬比的奈米級孔洞,且製程簡易,成本低廉,常用於模板輔助製備奈米結構材料,如:奈米棒、奈米線、奈米管等。
由於AAO須長時間才能得到高規則度排列的孔洞,且規則區域僅限於微米級,有人利用電子束微影製作規則排列突起的硬質模具(SiC與Si3N4),經由壓印在鋁基材造成規則排列凹坑,導引大面積規則排列孔洞的成長,但其模具昂貴且製備不易。
本研究利用兩種容易取得的硬質模具為壓模:二次陽極化的多孔質氧化鋁模板及以濕式蝕刻製備圖案矽晶片。在鋁基板上以壓印製程,將圖案化的鋁基板配合陽極化條件以製備規則排列之孔洞。
結果顯示,以AAO與矽模具壓印的凹坑圖案可有效導引陽極化氧化鋁模板孔洞之成長,利用模板孔洞成長有自我修補的特性,配合電壓選擇,可得到排列不同於原圖案的規則排列孔洞,可大幅降低以電子束微影製備硬質模具的成本。本研究亦成功將此製程移至矽基鋁膜基材上,可於鋁薄膜上製作規則之圖案,未來可應用於奈米材料及元件之製作。
Porous anodic alumina oxide (AAO), a typical self-ordered nanochannel material with the characteristic feature of ordered high-aspect-ratio channels, has recently attracted increasing interest as a key material for the fabrication of nanometer-scale structures and devices.
However, the defect-free area of naturally ordering nanochannel is limited to a domain of several micrometers. Therefore, the preparation of AAO with a single domain structure in a large area is of great interest to the materials community. The proporsed pretexturing procedure by nanoimprinting is effective for precise control of the growth of the channel array in the anodic alumina oxide. But this procedure is relatively expensive due to the utilization of electron beam lithography.
In this study, the imprinting procedure has been conducted on aluminum substrates by utilizing ordered AAO and patterned Si as the mold, which can be easily fabricated in a large area at low cost. After imprinting, the anodization of patterned aluminum substrates was performed with different process parameters in order to study the effect of the pre-patterning step on the pore growth characteristics of AAO.
Experimental results show that the concaves on the pre-patterned surface of aluminum can guide the growth of nanochannels during anodization. Even a new lattice of pores with a reduced dimension can be prepared with the matched voltages by the assistance of the self-repair of AAO. In addition, the ordered nanopore arrays can be successfully prepared using the same procedure on the Al films deposited on the Si substrate. Thus, it is expected to be applied in the fabrication of nanostructures and nanodevices in the future.
1 Hong Xiao, “Introduction to semiconductor manufacturing technology,” Chap.1, p.8, 2001, Prentice Hall Inc.
2 張立德、牟季美 著, “奈米材料和奈米結構,” Chap.1, p.5, 2002, 滄海書局.
3 P. Boucaud, X. Li, M. E. Kurdi, S. David, X. Checoury, S. Sauvage, C. Kammerer, S. Cabaret, V.L. Thanh, D. Bouchier, J.M. Lourtioz, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Ge islands and photonic crystals for Si-based photonics,” Optical Materials 27 (2005) 792.
4 Y.W. Su, C.S. Wu, C.C. Chen, and C.D. Chen, “Fabrication of two-dimensional arrays of CdSe pillars using e-beam lithography and electrochemical deposition,” Adv. Mater. 15 (2003) 49.
5 S. Cabrini, A. Carpentiero, R. Kumar, L. Businaro, P. Candeloro, M. Prasciolu, A. Gosparini, C. Andreani, M.D. Vittorio, T. Stomeo, and E. D. Fabrizio, “Focused ion beam lithography for two dimensional array structures for photonic applications,” Microelectronic Engineering 78-79 (2005) 11.
6 P.A. Brooksby, and A.J. Downard, “Nanoscale patterning of flat carbon surfaces by scanning probe lithography and electrochemistry,” Langmuir 21 (2005) 1672
7 Z.J. Liang, and A.S. Susha, “Mesostructured silica tubes and rods by templating porous membranes,” Chem.-A Eur. 10 (2004) 4910.
8 G.. Riveros, H. Gomez, A. Cortes, R.E. Marotti, and E.A. Dalchiele “Crystallographically oriented single crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Appl. Phys. A 81 (2005) 17.
9 S.L. Kuai, V.V. Truong, A. Hache, and X.F. Hu, “A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates,” J. Appl. Phys. 96 (2004) 5982.
10 S.Z. Chu, K. Wada, S. Inoue, S. Todoroki, “Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition,” Electrochimica Acta 48 (2003) 3147.
11 Y.C. Wang, I.C. Leu, and M.H. Hon, “Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition,” J. Mater. Chem. 12 (2002) 2439.
12 H. Masuda, H. Yamada, M. Satoh, and H. Asoh , “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 10.
13 L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D: Appl. Phys. 37 (2004) R123–R141.
14 H. Masuda, K. Kanezawa, and K. Nishio, “Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope,” Chem. Lett. 1218 2002
15 N.W. Liu, A. Datta, C Y. Liu, and Y L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays,”Appl. Phys. Lett. 82 (2003) 1281
16 S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. A. Ozin, “Highly ordered nanosphere imprinted nanochannel alumina (NINA),” Adv. Mater. 16 (2004) 2193
17 H. Masuda, Y. Matsui, M. Yotsuya, F. Matsumoto, and K. Nishio, “Fabrication of highly ordered anodic porous alumina using self-organized polystyrene particle array,” Chem. Lett. 33 (2004) 584
18 S.Y. Chou, P.R. Krauss, and P.J. Renstrom , “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67 (1995) 3114.
19 S.Y. Chou, P.R. Krauss, and P.J. Renstrom , “Imprint lithography with 25-nanometer resolution,” Science 272 (1996) 85.
20 J.P. O'Sullivan, and G.C. Wood , “The morphology and mechanism of formation of porous anodic films on aluminum,” Proc. R.Soc. (London) A 317 (1970) 511.
21 F. Keller, M.S. Hunter, and D.L. Robinson, “Structural features of oxide coating on aluminium,” J. Electrochem. Soc. 100 (1953) 411.
22 D. Almawlawi, K.A. Bosnick, A . Osika, and M. Moskovits, “Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks,” Adv. Mater. 12 (2000) 1252.
23 A.P. Li, F.Muller, A.Birner, K.Nielsch, and U. Gosele, “Polycrystalline nanopore arrays with hexagonal ordering on aluminum,“ J. Vac. Sci. Technol. A 17 (1999) 1428.
24 G..E. Thompson and G.C. Wood, “Corrosion:Aqueous process and passive films,” Treatise on Materials Science and Technology 23, Chap.5, p.206, 1983, Academic Press Inc.(London) Ltd.
25 D.A. Vermilyea, “Determination of barrier layer thickness of anodic oxide coatings,” J. Electrochem.Soc. 110 (1963) 345.
26 M.A. Heine and M.J. Pryor, “A study of pore structures of anodized aluminum,” J. Electrochem. Soc. 110 (1963) 1205.
27 A.J. Brock and G.C. Wood, ”Studies on the structure of anodic oxide films on aluminium,” Electrochem. Acta 12 (1967) 395.
28 G.T. Roger, P.H.G. Draper, and S.S. Wood, “Information on anodic oxide on valve metals:oxide growth at constant rate of voltage increase,” Electrochem. Acta 13 (1968) 251.
29 A.F. Well, Structural inorganic chemistry, 2nd ed, Clarendon Press, Oxford (1952) 37.
30 G.E. Thompson, and GC. Wood, “Porous anodic film formation on aluminum,” Nature 290 (1981) 230.
31 F. Li, L. Zhang, and R.M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
32 K.Ebihara, H. Takahashi, and M. Nagayama, J. Met. Finish. Soc. Jpn. 34 (1983) 548.
33 H. Masuda, and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268 (1995) 1466.
34 O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173
35 A.P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84 (1998) 6023.
36 C.Y. Liu, A. Datta, and Y.L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,”Appl. Phys. Lett. 78 (2001) 120.
37 H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. 78 (2001) 826.
38 H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, and H. Masuda, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” J. Vac. Sci. Technol. B 19 (2001) 569.
39 H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, “Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al,” J. Electrochem. Soc. 148 (2001) B152.
40 “Physical Metallurgy Principles 3rd,” Chap. 5, p.162, 1994, R.E. Reed-Hill and R. Abbaschian An International Thomson Publishing Co.
41 T.P. Hoar, and N.F. Mott, J. Phys. Chem. Solids 9 (1959) 97.
42 V.P. Parkhutik, and V.I. Shershulsky, “Theoretical modeling of porous oxide growth on aluminium,” J. Phys. D:Appl. Phys. 25 (1992) 1258.
43 S. K. Thamida, and H.C. Chang, “Nanoscale pore formation dynamics during aluminum anodization,” Chaos 12 (2002) 240.
44 H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13 (2001) 189.
45 J. Choi, R.B. Wehrspohn, and U. Gosele, “Mechanism of guided self-organization producing quasi-monodomain porous alumina,” Electrochimica Acta 50 (2005) 2591.
46 H. Asoh, S. Ono, T. Hirose, I. Takatori, and H. Masuda, “Detailed observation of cell junction in anodic porous alumina with square cells,” Jpn. J. Appl. Phy. 43 9A (2004) 6342.
47 H. Asoh, S. Ono, T. Hirose, M. Nakao, and H. Masuda, “Growth of anodic porous alumina with square cells,” Electrochimica Acta 48 (2003) 3171.
48 J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gosele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21 (2003) 763.
49 I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J.G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13 (2001) 1574.
50 H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated Al on Si,” Jpn. J. Appl. Phys. 40 (2001) L 1267.
51 D.Crouse, Y.H. Lo, A.E. Miller, and M. Crouse, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer,” Appl. Phys. Lett. 76 (2000) 49.