| 研究生: |
阮氏水秀 Nguyen, Thi Thuy Tu |
|---|---|
| 論文名稱: |
阿拉伯芥在自然衰老和除草劑干擾下的激素調節與活性氧訊號參與之研究 Hormonal regulation and ROS signaling involved in senescence process under the natural condition and herbicide disturbance in Arabidopsis thaliana |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 外文關鍵詞: | Aging, Glyphosate, death, hormones, oxidative stress, Arabidopsis thaliana. |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Plant senescence can be induced by various environmental stresses (darkness, cold, heat, drought, pathogen attack) and internal factors (age, reproduction process, phytohormones). It is a complex process over which cells undergo sequential changes in cellular structure, metabolism, and gene expression. Leaf senescence has been well studied, but little is known in root senescence. Moreover, diverse studies have investigated plant senescence in separate organs of leaf, flower (petal), seedling, and tuber; whereas whole plant senescence is poorly characterized. Here I used Arabidopsis thaliana as a model to elucidate the mechanisms promoting whole plant senescence in natural and artificial conditions. Transcriptome analyses revealed that jasmonic acid (JA), abscisic acid (ABA), salicylic acid (SA), and ethylene promoted senescence in leaf, while JA and ethylene trigger senescence in roots. The comparison between natural death (ND) and artificial death (AD) in leaf and root suggested that AD is similar to ND stage 1 in leaf (6th week after germination, ND1), closer to ND stage 2 (7th week after germination, ND2) in root. Several ROS/oxidants and antioxidants (peroxidase proteins and glutathione S-transferase) were detected in leaf and root, respectively. Three genes that were over-expressed in both AD and ND2 in the root, AT2G43570 (chitinase), AT3G04720 (pathogenesis-related 4), and AT2G18660 (plant natriuretic peptide A) were involved in SAR- systemic acquired resistance which has been known to be associated with ROS signaling. In which, AT2G43570 is a marker for SAR, AT3G04720 is an SAR-associated defense gene, and AT2G18660 functions as a signal via phloem. Taken together, during the whole plant senescence, plant hormones regulated the generation of ROS signals in leaves, while these signals are then transported to roots via long distance signaling factors and induced the increase of antioxidants.
Abraham, L. K., & Laura, L. T. (2012). Histology and cell biology: An introduction to pathology. Saunders, USA.
Agarwal, B. D., Broutman, L. J., & Chandrashekhara, K. (2006). Analysis and performance of fiber composites. John Wiley & Sons.
Ahsan, N., Lee, D. G., Lee, K. W., Alam, I., Lee, S. H., Bahk, J. D., & Lee, B. H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46(12), 1062-1070.
Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307.
Avila-Ospina, L., Moison, M., Yoshimoto, K., & Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 65(14), 3799-3811.
Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C., & Toledano, M. B. (2003). Two redox centers within Yap1 for H 2 O 2 and thiol-reactive chemicals signaling. Free Radical Biology and Medicine, 35(8), 889-900.
Baxter, H. L., & Stewart Jr, C. N. (2013). Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels, 4(6), 635-650.
Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C., ... & Zhang, C. (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23(3), 873-894.
Buchanan‐Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., ... & Leaver, C. J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation‐induced senescence in Arabidopsis. The Plant Journal, 42(4), 567-585.
Cakmak, I., Yazici, A., Tutus, Y., & Ozturk, L. (2009). Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. European Journal of Agronomy, 31(3), 114-119.
Chachalis, D., & Reddy, K. N. (2004). Pelargonic acid and rainfall effects on glyphosate activity in trumpetcreeper (Campsis radicans). Weed technology, 18(1), 66-72.
Cobb, A. H., & Reade, J. P. (2011). Herbicides and plant physiology. John Wiley & Sons.
Depuydt, S., & Hardtke, C. S. (2011). Hormone signalling crosstalk in plant growth regulation. Current Biology, 21(9), R365-R373.
Diaz, C., Lemaître, T., Christ, A., Azzopardi, M., Kato, Y., Sato, F., ... & Masclaux-Daubresse, C. (2008). Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiology, 147(3), 1437-1449.
Doğramacı, M., Foley, M. E., Horvath, D. P., Hernandez, A. G., Khetani, R. S., Fields, C. J., ... & Anderson, J. V. (2015). Glyphosate’s impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC genomics, 16(1), 395.
Du, Z., Crow, E. T., Kang, H. S., & Li, L. (2010). Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function. Molecular and cellular biology, 30(19), 4644-4655.
Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic acids research, 38(suppl_2), W64-W70.
Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once‐in‐a‐century herbicide. Pest management science, 64(4), 319-325.
Faus, I., Zabalza, A., Santiago, J., Nebauer, S. G., Royuela, M., Serrano, R., & Gadea, J. (2015). Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC plant biology, 15(1), 14.
Fowler, S., & Thomashow, M. F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell, 14(8), 1675-1690.
Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875.
Gan, S., & Amasino, R. M. (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant physiology, 113(2), 313-319.
Gomes, M. P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., ... & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of experimental botany, 65(17), 4691-4703.
Guiboileau, A., Sormani, R., Meyer, C., & Masclaux-Daubresse, C. (2010). Senescence and death of plant organs: nutrient recycling and developmental regulation. Comptes rendus biologies, 333(4), 382-391.
Guo, Y., & Gan, S. (2005). Leaf senescence: signals, execution, and regulation. Current topics in developmental biology, 71, 83-112.
Guo, Y., Cai, Z., & Gan, S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant, cell & environment, 27(5), 521-549.
He, Y., Fukushige, H., Hildebrand, D. F., & Gan, S. (2002). Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant physiology, 128(3), 876-884.
Hirayama, T., & Shinozaki, K. (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends in plant science, 12(8), 343-351.
Hörtensteiner, S. (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in plant science, 14(3), 155-162.
Igamberdiev, A. U., & Hill, R. D. (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany, 55(408), 2473-2482.
Jibran, R., Hunter, D. A., & Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82(6), 547.
Jing, H. C., Schippers, J. H., Hille, J., & Dijkwel, P. P. (2005). Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of experimental botany, 56(421), 2915-2923.
Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30.
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research, 45(D1), D353-D361.
Kaul, S., Koo, H. L., Jenkins, J., Rizzo, M., Rooney, T., Tallon, L. J., ... & Town, C. D. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. nature, 408(6814), 796-815.
Kelley, D. R., Arreola, A., Gallagher, T. L., & Gasser, C. S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development, 139(6), 1105-1109.
Khan, M., Rozhon, W., & Poppenberger, B. (2014). The role of hormones in the aging of plants-a mini-review. Gerontology, 60(1), 49-55.
Khanna-Chopra, R. (2012). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249(3), 469-481.
Kim, J. I., Murphy, A. S., Baek, D., Lee, S. W., Yun, D. J., Bressan, R. A., & Narasimhan, M. L. (2011). YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of experimental botany, 62(11), 3981-3992.
Kim, M. S., Kondo, T., Takada, I., Youn, M. Y., Yamamoto, Y., Takahashi, S., ... & Kitagawa, H. (2009). DNA demethylation in hormone-induced transcriptional derepression. Nature, 461(7266), 1007-1012.
Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X., & Harper, J. F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant physiology, 130(4), 2129-2141.
Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf senescence. Annu. Rev. Plant Biol., 58, 115-136.
Liu, J., Osbourn, A., & Ma, P. (2015). MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular plant, 8(5), 689-708.
Morris, K., Mackerness, S. A. H., Page, T., John, C. F., Murphy, A. M., Carr, J. P., & Buchanan‐Wollaston, V. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 23(5), 677-685.
Narumi, R., Murakami, T., Kuga, T., Adachi, J., Shiromizu, T., Muraoka, S., ... & Miyamoto, Y. (2012). A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples. Journal of proteome research, 11(11), 5311-5322.
Penfold, C. A., & Buchanan-Wollaston, V. (2014). Modelling transcriptional networks in leaf senescence. Journal of experimental botany, 65(14), 3859-3873.
Reddy, K. J., & Gilman, M. (2001). Preparation of bacterial RNA. Current protocols in molecular biology, 4-4.
Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal, 49(4), 592-606.
Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest biology and technology, 15(3), 279-292.
Seltmann, K., Fritsch, A. W., Käs, J. A., & Magin, T. M. (2013). Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences, 110(46), 18507-18512.
Shahri, W., Tahir, I., Islam, S. T., & Bhat, M. A. (2011). Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis Lam. cv. Olympicus. Physiology and Molecular Biology of Plants, 17(1), 33-39.
Shahrtash, M. A. R. Y. A. M. (2013). Plant glutathione S-transferases function during environmental stresses: a review article. Romanian Journal of Biology—Plant Biology, 58(1), 19-25.
Sharabi‐Schwager, M., Samach, A., & Porat, R. (2010). Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene. Plant Biology, 12(4), 630-638.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, 2012.
Stead, A. D. (1992). Pollination-induced flower senescence: a review. Plant Growth Regulation, 11(1), 13-20.
Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440-9445.
Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytologist, 197(3), 696-711.
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., ... & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3), 562-578.
Tripathi, S. K., & Tuteja, N. (2007). Integrated signaling in flower senescence: an overview. Plant signaling & behavior, 2(6), 437-445.
Tripathy, B. C., & Oelmüller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant signaling & behavior, 7(12), 1621-1633.
Van Doorn, W. G. (2001). Categories of petal senescence and abscission: a re-evaluation. Annals of Botany, 87(4), 447-456.
Van Doorn, W. G., & Stead, A. D. (1997). Abscission of flowers and floral parts. Journal of Experimental Botany, 48(4), 821-837.
Van Doorn, W. G., & Woltering, E. J. (2008). Physiology and molecular biology of petal senescence. Journal of Experimental Botany, 59(3), 453-480.
Vaux, D. L., & Korsmeyer, S. J. (1999). Cell death in development. Cell, 96(2), 245-254.
Weaver, L. M., Gan, S., Quirino, B., & Amasino, R. M. (1998). A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant molecular biology, 37(3), 455-469.
Woo, H. C., Lizarda, A., Tucker, R., Mitchell, M. L., Vohr, B., Oh, W., & Phornphutkul, C. (2011). Congenital hypothyroidism with a delayed thyroid-stimulating hormone elevation in very premature infants: incidence and growth and developmental outcomes. The Journal of pediatrics, 158(4), 538-542.
Xia, X. J., Zhou, Y. H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66(10), 2839-2856.
Xu, F., Meng, T., Li, P., Yu, Y., Cui, Y., Wang, Y., ... & Wang, N. N. (2011). A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant physiology, 157(4), 2131-2153.
Yang, S. D., Seo, P. J., Yoon, H. K., & Park, C. M. (2011). The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 23(6), 2155-2168.
Zeevaart, J. A. D., & Creelman, R. A. (1988). Metabolism and physiology of abscisic acid. Annual review of plant physiology and plant molecular biology, 39(1), 439-473.
Zhang, H., & Zhou, C. (2013). Signal transduction in leaf senescence. Plant molecular biology, 1-7.
Zhang, K., Halitschke, R., Yin, C., Liu, C. J., & Gan, S. S. (2013). Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proceedings of the National Academy of Sciences, 110(36), 14807-14812.
校內:2022-07-30公開