簡易檢索 / 詳目顯示

研究生: 王冠儒
Wang, Kuan-Ju
論文名稱: 建構可調控頻譜相位編碼技術於被動式光纖到府網路以強化通訊私密性
Confidential Enhancement with Programmable Spectral Phase Coding over Fiber-to-the-Home Access Network
指導教授: 黃振發
Huang, Jen-Fa
張耀堂
Chang, Yao-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 63
中文關鍵詞: 頻譜相位編碼陣列波導光柵光纖到府私密度光分碼多重擷取技術
外文關鍵詞: spectral phase coding (SPC), degree of confidentiality (DOC), fiber-to-the-home (FTTH), optical CDMA, arrayed-waveguide gratings (AWGs)
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出陣列波導光柵(AWG)所建構的可調控頻譜相位(programmable spectral phase coding)編解、碼器運用於被動式光纖到府(FTTH)網路。為了改善傳統頻譜相位編解碼架構的位元錯誤率(bit error rate)、系統的私密性(Confidentiality)與信號雜訊比(signal-to-noise ratio)等系統效能,本論文中使用者光指配碼將利用Walsh-Hadamard互補碼於頻譜相位編、解碼中且建構一套頻譜相位碼的變換機制。
    然而,當竊聽者能夠獨立竊聽單一使用者訊號(例如:上傳網路),使用者所使用的頻譜相位碼將可能被光混合檢測器(optical beat detector)於數秒內竊取使用者碼型,相較於暴力猜測法(brute force searching strategy),竊聽者使用此檢測器可達到較有效的攻擊方式。更進一步,為了改善傳統頻譜相位編解碼架構可能遭受竊聽者使用能量檢測器(simple photo-detector)或光混合檢測器竊取使用者資訊,我們將隱藏變換相位碼機制中起始相位狀態(initial phase state)和轉換相位狀態(phase state shifting steps)的資訊,使竊聽者缺乏變換相位狀態資訊下,無法順利竊取使用者碼型以提昇系統安全性。
    本論文中,我們將計算竊聽者有效竊取的信號雜訊比(eavesdropper’s effective SNR)和推估竊聽者利用光混合檢測器竊取使用者碼型所需要的時間,且定義私密度的指標(degree of confidentiality, DOC)來進行私密性的定量分析。相較於傳統頻譜相位編解碼架構,結果顯示出本架構可達到較低的位元錯誤率和在竊聽者使用能量檢測器或光混合檢測器攻擊之下提供較佳的私密性。

    A new programmable AWG-Based spectral phase coding OCDMA scheme with changing phase state mechanism is configured over a fiber-to-the-home (FTTH) network. In order to improve bit error rate as well as the confidentiality and signal-to-noise ratio (SNR) of conventional spectral phase coding (SPC) OCDMA scheme, the proposed scheme employ complementary SPC code with Hadamard code as signature address codeword and exploit changing codeword mechanism.
    Nevertheless, when the eavesdroppers isolate a single user signal (i.e., upstream traffic), the phase chips (i.e., each with a value 0 or p) of user codeword would be extracted within seconds by adopting optical beat detectors, which could be more efficient attack than using brute force searching strategy, and the conventional SPC scheme is vulnerable to such eavesdropping. To further overcome conventional SPC for confidential weakness, the proposed programming complementary SPC scheme is configured to protect against even eavesdropper using either simple photo-detector or optical beat detector to detect ONU codeword. The proposed scheme achieve confidentiality because that eavesdroppers is lacked the changing codeword mechanism based on the initial phase state and shift step knowledge.
    In this thesis, the quantitative analyses of network confidentiality are performed by the eavesdropper’s effective signal-to-noise ratio (SNR), the required searching time and the degree of confidentiality afforded against an eavesdropping attack executed using optical beat detectors. Compared to conventional SPC OCDMA scheme, the proposed scheme not only achieves better BER as well as confidentiality under eavesdropper attacking by using optical beat detector.

    Chapter 1. Introduction 1 1.1 The Development of EPON Technology over FTTH 2 1.2 The Possible Multiplexing of EPON Technology 4 1.2.1 Time Division Multiplexing over EPON 4 1.2.2 Wavelength Division Multiplexing over EPON 6 1.2.3 Code Division Multiplexing over EPON 8 1.3 Confidentiality of Optical CDMA 9 1.3.1 Increase the Code Complexity 11 1.3.2 Decrease the Eavesdropper’s Signal-to-noise Ratio 12 1.3.3 Change Codewords Frequently 12 1.4 The Motivation of Our Research 12 1.5 Thesis Preview 13 Chapter 2. Overviews on Optical CDMA Techniques 15 2.1 Optical Components in OCDMA System 15 2.1.1 Arrayed-Waveguide-Grating 15 2.1.2 Mode-Locked Laser 17 2.1.3 Liquid-Crystal Spatial Light Modulator 19 2.2 Review the Conventional SPC OCDMA Scheme 21 Chapter 3. The Complementary SPC Codes 24 3.1 The Design of Complementary SPC Codes 25 3.1.1 Walsh–Hadamard based Complementary SPC Codes 25 3.1.2 Programmable Complementary SPC Codes 26 3.1.3 Changing Phase State Mechanism 28 3.2 Realization of the Proposed SPC Encoder 30 3.3 Realization of the Proposed SPC Decoder 34 Chapter 4. Confidentiality Performance of the Proposed System 39 4.1 Correlation and Bit Error Rate (BER) Evaluation 39 4.2 Evaluation of Eavesdropper’s Effective Signal-to-noise Ratio 48 4.3 Evaluation of Required Searching Time for Optical Beat Detector Eavesdroppers 52 4.4 Degree of Confidentiality of the Proposed System 54 Chapter 5. Conclusions 57 Reference 58

    [1] G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): Building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Feb 2002.
    [2] M. D. Ma, Y. Q. Zhu, and T. H. Cheng, "A systematic scheme for multiple access in Ethernet passive optical access networks," IEEE J. Lightwave Technol., vol. 23, pp. 3671-3682, Nov 2005.
    [3] K. S. Kim, "On the evolution of PON-based FTTH solutions," 2003, pp. 21-30.
    [4] D. Sudhir, "IP Over WDM: building the next-generation optical internet," Wiley-Interscience, pp. 533, 2003.
    [5] J. P. Heritage and A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Selected Topics in Quantum Electron., vol. 13, pp. 1351-1369, Sep-Oct 2007.
    [6] J. A. Salehi, "Emerging OCDMA communication systems and data networks [Invited]," Journal of Optical Networking, vol. 6, pp. 1138-1178, Sep 2007.
    [7] A. M. Weiner, Z. Jiang, and D. E. Leaird, "Spectrally phase-coded O-CDMA [invited]," Journal of Optical Networking, vol. 6, pp. 728-755, Jun 2007.
    [8] S. J. B. Yoo, J. P. Heritage, V. J. Hernandez, "Spectral phase encoded time spread optical code division multiple access technology for next generation communication networks [Invited]," Journal of Optical Networking, vol. 6, pp. 1210-1227, Oct 2007.
    [9] A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, and P. Delfyett, "Fully-programmable ring resonator based integrated photonic circuit for phase coherent applications," in Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, pp. 3 , vol. 5, 2005.
    [10] J. P. Heritage, A. M. Weiner, and R. N. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Optics Letters, vol. 10, pp. 609-611, 1985.
    [11] H. P. Sardesai, C. C. Chang, and A. M. Weiner, "Encoding and decoding of femtosecond pulses for code division multiple access communication systems using a pair of fiber-pigtailed pulse shapers," in Lasers and Electro-Optics Society Annual Meeting, 1997. LEOS '97 10th Annual Meeting. Conference Proceedings., IEEE, pp. 310-311 vol.2, 1997.
    [12] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," Journal of the Optical Society of America B-Optical Physics, vol. 5, pp. 1563-1572, Aug 1988.
    [13] W. Xu, N. Wada, T. Hamanaka, J. Kitayama, and A. Nishiki, "10-user, truly-asynchronous OCDMA experiment with 511-chip SSFBG en/decoder and SC-based optical thresholder," in Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, pp. 3, vol. 5, 2005.
    [14] J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light-pulse code-division multiple access communication-systems," Journal of Lightwave Technology, vol. 8, pp. 478-491, Mar 1990.
    [15] H. P. Sardesai, C. C. Chang, and A. M. Weiner, "A femtosecond code-division multiple-access communication system test bed," IEEE J. Lightwave Technol. , vol. 16, pp. 1953-1964, 1998.
    [16] J. Hui, "Pattern Code Modulation and Optical Decoding--A Novel Code-Division Multiplexing Technique for Multifiber Networks," IEEE Journal on Selected Areas in Commun., vol. 3, pp. 916-927, 1985.
    [17] N. Karafolas and D. Uttamchandani, "Optical Fiber Code Division Multiple Access Networks: A Review," Optical Fiber Technology, vol. 2, pp. 149-168, 1996.
    [18] T. H. Shake, "Security performance of optical CDMA against eavesdropping," IEEE J. Lightwave Technol., vol. 23, pp. 655-670, Feb 2005.
    [19] T. H. Shake, "Confidentiality performance of spectral-phase-encoded optical CDMA," IEEE J. Lightwave Technol., vol. 23, pp. 1652-1663, Apr 2005.
    [20] Y. T. Chang, C. C. Sue, and J. F. Huang, "Robust design for reconfigurable coder/decoders to protect against eavesdropping in spectral amplitude coding optical CDMA networks," IEEE J. Lightwave Technol., vol. 25, pp. 1931-1948, Aug 2007.
    [21] J. F. Huang, Y. T. Chang, C. C. Sue, and D. S. Wang, "Reconfigurable Coded WDM with Arrayed-Waveguide-Gratings to Enhance Confidentiality on Fiber-to-the-Home Networks," APCC '06. Asia-Pacific Conference on Communications, pp. 1-5, 2006.
    [22] J. R. Stern, C. E. Hoppitt, D. B. Payne, M. H. Reeve, and K. Oakley, "TPON-a passive optical network for telephony," Fourteenth European Conference on Optical Communication, pp. 203-206 vol.1, 1988.
    [23] K. Kitayama, X. Wang, and N. Wada, "OCDMA over WDM PON - Solution path to gigabit-symmetric FTTH," IEEE J. Lightwave Technol., vol. 24, pp. 1654-1662, Apr 2006.
    [24] F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, "Success-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON," IEEE Commun. Mag., pp. S40-S47, Nov 2005.
    [25] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov 2004.
    [26] A. Sierra and S. V. Kartalopoulos, "Evaluation of Two Prevalent EPON Networks Using Simulation Methods," International Conference on Internet and Web Applications and Services/Advanced International Conference on Telecommunications, pp. 48-48, 2006.
    [27] J. S. Wu, F. R. Gu, and H. W. Tsao, "Jitter performance analysis of SOCDMA-based EPON using perfect difference codes," IEEE J. Lightwave Technol., vol. 22, pp. 1309-1319, May 2004.
    [28] A. Stok and E. H. Sargent, "The role of optical CDMA in access networks," IEEE Commun. Mag., vol. 40, pp. 83-87, Sep 2002.
    [29] S. Yegnanarayanan, A. S. Bhushan, and B. Jalali, "Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett., vol. 12, pp. 573-575, May 2000.
    [30] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed-wave-guide NxN wavelength multiplexer," IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar 1995.
    [31] S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Reviews of Modern Physics, vol. 75, pp. 325-342, Jan 2003.
    [32] A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti : sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Optics Letters, vol. 24, pp. 996-998, Jul 1999.
    [33] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron., vol. 28, pp. 908-920, Apr 1992.
    [34] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator," Optics Letters, vol. 15, pp. 326-328, Mar 1990.
    [35] H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, "Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating," Electronics Letters, vol. 35, pp. 1186-1188, 1999.
    [36] P. R. Prucnal, "Optical Code Division Multiple Access: Fundamentals and Applications," CRC Press, 2006.
    [37] J. F. Huang, C. C. Yang, and S. P. Tseng, "Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers," Optics Communications, vol. 229, pp. 241-248, Jan 2004.
    [38] Y. Igarashi and H. Yashima, "Performance analysis of coherent ultrashort light pulse CDMA communication systems with nonlinear optical thresholder," IEICE Transactions on Communications, vol. E89B, pp. 1205-1213, Apr 2006.
    [39] R. A. Griffin, D. D. Sampson, and D. A. Jackson, "Coherence coding for photonic code-division multiple-access networks," IEEE J. Lightwave Technol., vol. 13, pp. 1826-1837, Sep 1995.
    [40] B. Moslehi, "Noise power spectra of optical two-beam interferometers induced by the laser phase noise," IEEE J. Lightwave Technol., vol. 4, pp. 1704-1710, 1986.
    [41] Y. Igarashi, I. Okajima, and H. Yashima, "Improvement of coherent ultrashort light pulse CDMA communication systems with distinct 4-level m-sequences," IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, vol. E89A, pp. 3018-3025, Nov 2006.
    [42] L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping time spreading codes," IEEE Photon. Technol. Lett., vol. 7, pp. 573-575, May 1995.

    下載圖示 校內:立即公開
    校外:2009-08-11公開
    QR CODE