簡易檢索 / 詳目顯示

研究生: 王予彣
Wang, Yu-Wen
論文名稱: 運用新的殼模型參數研究奈米尺度的電域壁移動機制以及界面效應
Study Interfacial Effect of Domain Motion at Nanoscale by New Parameterized Shell Model Potential
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 鈦酸鉛鐵電材料殼核勢能參數電域壁
外文關鍵詞: lead titanate, ferroelectric materials, core-shell model, domain wall
相關次數: 點閱:135下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鈦酸鉛具有優異的機電性質以及鐵電性質,其固溶體如Pb(Zr, Ti)O3 (PZT) 和Pb(Mg1/3, Nb2/3)O3-PbTiO3 (PMNPT)等等…,已經被廣泛使用在科技產品上,像是微致動器(micro-actuator),傳感器(sensors),與隨機存取記憶體(nonvolatile random access memories,FeRAMs)等等…。鈦酸鉛在無添加電場情況下便具有自發極化量,對於這種材料而言,輕微的原子位移變化便會顯著影響機械特性以及鐵電特性,因此,深入的在原子尺度下了解鐵電材料行為是必要的。另外,鐵電材料的電域以及電域壁的性質在近年來引起大量的關注,具電域壁之鐵電體能增大光伏效應產生之電壓,提升效率,且電域壁可隨著電場的作用下發生改變,可以運用在可擦除式記憶體,然而,電域翻轉以及電域壁移動皆在皮秒(ps)~毫秒(ms)之內發生,實驗上難以觀測,因此需藉由電腦分子動力學模擬研究,來分析電域壁在原子級之資訊。
    本研究成功開發了新的殼核模型參數來模擬鈦酸鉛之原子間作用力,而新參數由擬合第一原理計算之鈦酸鉛晶體結構、彈性常數、聲子振動頻率等等…,並且通過使用新參數來進行分子動力學模擬來驗證參數的合理性以及在有限溫度下的預測能力,且模擬出鈦酸鉛從四方體轉變至立方體之相轉變過程,相轉變溫度為697 K,略低於實驗值760 K。此外,使用新參數勢能模擬奈米尺度下180度電域壁和90度電域壁,在不同溫度下電域大小以及界面對電域壁的穩定性,並且找出在不同溫度下,電域壁能穩定存在之最小電域大小,隨後更進一步的施加均勻電場,觀測電域在電場的作用下之反應。

    Due to its outstanding electromechanical properties, lead titanate (PbTiO3) and it’s solid solutions, such as Pb(Zr,Ti)O3 (PZT) and Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMNPT), have been widely applied in technological devices like non-volatile random access memories (FeRAMs), micro-actuator and sensors[1-7]. For such materials, a slight atomic displacement strongly affects both mechanical and ferroelectric (FE) properties. Thus, a proper understanding of the atomic behavior of ferroelectrics is required. Computational simulation is a promising tool for analysis of the properties above. In this study, we have successfully reparameterized the core-shell model to model PbTiO3. The new parameters considered the crystal structures, elastic properties and phonon frequencies which calculated by ab-initio density functional theory calculations. Moreover, the new parameters were also tested by molecular dynamics simulations to examine the predictive ability at finite temperature. The phase transition temperature of 697 K from the tetragonal to the cubic phase was obtained, which is 63 K underestimated compare with the experimental results, 760 K. Furthermore, the new model was then used to study the interfacial effect on ferroelectricity at the nanoscale. The critical size of domain of the ferroelectric domains which can be stabilized the 180 domain wall at various temperatures in bulk and thin film are concerned. Found that the stabilized of the domain wall is depend on the difficulty of polarization reversed. From the simulated models, a deeper understanding of the domain motion in atomic scale was achieved.

    目錄 摘要 I ABSTRACT II 致謝 XXIII 表目錄 XXVII 圖目錄 XXVIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 鐵電材料的特性與應用 3 2.1.1鐵電效應 3 2.1.2電滯曲線 4 2.1.3鐵電材料應用 5 2.2鈦酸鉛之性質與微結構 6 2.3鈦酸鉛機械性質與鐵電性質 8 2.3.1彈性常數與機械性質的關係 8 2.3.2 實驗方法運用於鈦酸鉛之機電特性 9 2.3.3 計算方法運用於鈦酸鉛之機電特性 10 2.4電域模型模擬相關文獻 12 2.4.1電域自由能模型理論 12 2.4.2鈦酸鉛電域壁能量 13 2.4.3電域壁與外加電場作用 17 第三章 模擬基礎理論回顧 20 3.1第一原理(First-principles) 20 3.1.1密度泛函理論(DFT) 20 3.1.2 Kohn-Sham 方法與方程式 21 3.1.3交換關聯能-局部密度近似與廣義梯度近似 23 3.1.4贗式能 24 3.1.5週期性邊界 25 3.2經驗勢能函數(Empirical Potential) 26 3.2.1 Buckingham Potential 26 3.2.2 Spring Potential 27 3.2.3 庫倫作用力Coulomb Potential 27 3.3分子動力學之基本假設與流程圖 28 3.3.1初始條件設定 29 3.3.2系綜 29 3.3.3運動方程式以及演算法 29 3.3.4溫度控制方法 31 3.3.5截斷勢能 31 第四章 物理模型與模擬設計 33 4.1 鈦酸鉛(PbTiO3)模型簡介 33 4.1.1結構優化 33 4.1.2彈性常數計算 34 4.2位能擬合流程簡介 35 4.3電域壁模型簡介 38 4.3.1 180度電域壁 38 4.3.2 90度電域壁 39 4.3.2極化量以及極化方向計算方法 42 第五章 結果與討論 45 5.1位能擬合 45 5.1.1第一原理計算目標值 45 5.1.2位能擬合結果 47 5.1.3演算法驗證 49 5.2相轉變溫度 51 5.3 180度電域壁模擬 53 5.3.1 分子動力學模擬180度電域壁性質 53 5.3.2 180度電域壁能量 58 5.3.3 電域大小與溫度關係 58 5.3.4 180度電域壁表面分析 64 5.3.5 表面與電域大小、溫度之關係 68 5.4 90度電域壁模擬 72 5.4.1分子動力學模擬90度電域壁性質 72 5.4.2 90度電域壁能量 77 5.4.3電域大小與溫度關係 79 5.5電域壁與電場作用 83 5.5.1 P-E curve 83 5.5.2 180度電域壁 88 第六章 結論 91 文獻回顧 92

    [1] M. H. Francombe, "Ferroelectric films and their device applications," Thin Solid Films, vol. 13, pp. 413-433, 1972.
    [2] G. H. Haertling, "Ferroelectric thin films for electronic applications," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, pp. 414-420, 1991.
    [3] C. A. P. de Araujo and G. W. Taylor, "Integrated ferroelectrics," Ferroelectrics, vol. 116, pp. 215-228, 1991/04/01 1991.
    [4] G. H. Haertling, "PLZT electrooptic materials and applications—a review," Ferroelectrics, vol. 75, pp. 25-55, 1987/09/01 1987.
    [5] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials: Oxford university press, 2001.
    [6] S. B. Lang, "Review of recent work on pyroelectric applications," Ferroelectrics, vol. 53, pp. 189-196, 1984.
    [7] T. Shimada, K. Wakahara, Y. Umeno, and T. Kitamura, "Shell model potential for PbTiO3and its applicability to surfaces and domain walls," Journal of Physics: Condensed Matter, vol. 20, p. 325225, 2008.
    [8] M. Sepliarsky, Z. Wu, A. Asthagiri, and R. E. Cohen, "Atomistic Model Potential for PbTiO3and PMN by Fitting First Principles Results," Ferroelectrics, vol. 301, pp. 55-59, 2004.
    [9] M. Sepliarsky and R. Cohen, "Development of a shell model potential for molecular dynamics for PbTiO3 by fitting first principles results," in AIP Conference Proceedings, 2002, pp. 36-44.
    [10] J. Solomon, P. Chung, D. Srivastava, and E. Darve, "Method and advantages of genetic algorithms in parameterization of interatomic potentials: Metal oxides," Computational Materials Science, vol. 81, pp. 453-465, 2014.
    [11] T. Shimada and T. Kitamura, "Multi-physics properties in ferroelectric nanowires and related Structures from first-principles," Nanowires, p. 353, 2010.
    [12] D. Ma, Y. Zheng, and C. Woo, "Phase-field simulation of domain structure for PbTiO3/SrTiO3 superlattices," Acta Materialia, vol. 57, pp. 4736-4744, 2009.
    [13] B. Jiang, J. Peng, L. Bursill, and W. Zhong, "Size effects on ferroelectricity of ultrafine particles of PbTiO 3," Journal of Applied Physics, vol. 87, pp. 3462-3467, 2000.
    [14] G. Kresse and J. Furthmüller, "Software VASP, vienna (1999)," Phys. Rev. B, vol. 54, p. 169, 1996.
    [15] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, pp. B864-B871, 1964.
    [16] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, "Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study," Physical Review B, vol. 57, p. 1505, 1998.
    [17] G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Physical Review B, vol. 59, p. 1758, 1999.
    [18] J. D. Gale and A. L. Rohl, "The general utility lattice program (GULP)," Molecular Simulation, vol. 29, pp. 291-341, 2003.
    [19] T. J. Ypma, "Historical development of the Newton–Raphson method," SIAM review, vol. 37, pp. 531-551, 1995.
    [20] A. G. Kalinichev, J. D. Bass, B. N. Sun, and D. A. Payne, "Elastic properties of tetragonal PbTiO3 single crystals by Brillouin scattering," Journal of Materials Research, vol. 12, pp. 2623-2627, 2011.
    [21] D. Fong, A. Kolpak, J. Eastman, S. Streiffer, P. Fuoss, G. Stephenson, et al., "Stabilization of monodomain polarization in ultrathin PbTiO 3 films," Physical review letters, vol. 96, p. 127601, 2006.
    [22] T. Nishimatsu, K. Aoyagi, T. Kiguchi, T. J. Konno, Y. Kawazoe, H. Funakubo, et al., "Molecular Dynamics Simulation of 90 Ferroelectric Domains in PbTiO3," Journal of the Physical Society of Japan, vol. 81, p. 124702, 2012.
    [23] B. Meyer and D. Vanderbilt, "Ab initiostudy of ferroelectric domain walls inPbTiO3," Physical Review B, vol. 65, 2002.
    [24] R. Eglitis, S. Piskunov, E. Heifets, E. A. Kotomin, and G. Borstel, "Ab initio study of the SrTiO3, BaTiO3 and PbTiO3 (0 0 1) surfaces," Ceramics International, vol. 30, pp. 1989-1992, 2004.
    [25] B. Meyer, J. Padilla, and D. Vanderbilt, "Theory of pbtio3, batio3, and srtio3 surfaces," Faraday Discussions, vol. 114, pp. 395-405, 1999.
    [26] D. I. Bilc, L. Zarbo, S. Garabagiu, E. Bousquet, and L. Mitoseriu, "High field properties of typical perovskite ferroelectrics by first-principles modeling," arXiv preprint arXiv:1605.07404, 2016.
    [27] P. Sharma, Q. Zhang, D. Sando, C. H. Lei, Y. Liu, J. Li, et al., "Nonvolatile ferroelectric domain wall memory," Science advances, vol. 3, p. e1700512, 2017.
    [28] R. Inoue, S. Ishikawa, R. Imura, Y. Kitanaka, T. Oguchi, Y. Noguchi, et al., "Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals," Sci Rep, vol. 5, p. 14741, Oct 7 2015.
    [29] M. Fontana, H. Idrissi, G. Kugel, and K. Wojcik, "Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak," Journal of Physics: Condensed Matter, vol. 3, p. 8695, 1991.
    [30] Y.-H. Shin, J.-Y. Son, B.-J. Lee, I. Grinberg, and A. M. Rappe, "Order–disorder character of PbTiO3," Journal of Physics: Condensed Matter, vol. 20, p. 015224, 2007/12/12 2007.
    [31] I. S. Sokolnikoff, Mathematical theory of elasticity: McGraw-Hill book company, 1956.
    [32] 吳松, "利用VASP計算不同晶系晶體彈性常數," 7/27 2009.
    [33] Z. Li, M. Grimsditch, X. Xu, and S. K. Chan, "The elastic, piezoelectric and dielectric constants of tetragonal PbTiO3 single crystals," Ferroelectrics, vol. 141, pp. 313-325, 1993/03/01 1993.
    [34] W. J. Merz, "Domain Formation and Domain Wall Motions in Ferroelectric BaTiO3Single Crystals," Physical Review, vol. 95, pp. 690-698, 1954.
    [35] R. Landauer, "Electrostatic Considerations in BaTiO3 Domain Formation during Polarization Reversal," Journal of Applied Physics, vol. 28, pp. 227-234, 1957.
    [36] Y. H. Shin, I. Grinberg, I. W. Chen, and A. M. Rappe, "Nucleation and growth mechanism of ferroelectric domain-wall motion," Nature, vol. 449, pp. 881-4, Oct 18 2007.
    [37] C. Ganpule, V. Nagarajan, H. Li, A. Ogale, D. Steinhauer, S. Aggarwal, et al., "Role of 90 domains in lead zirconate titanate thin films," Applied Physics Letters, vol. 77, pp. 292-294, 2000.
    [38] J. Jiang, Z. L. Bai, Z. H. Chen, L. He, D. W. Zhang, Q. H. Zhang, et al., "Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories," Nature materials, vol. 17, p. 49, 2018.
    [39] J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, et al., "Conduction at domain walls in oxide multiferroics," Nature materials, vol. 8, p. 229, 2009.
    [40] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 1965.
    [41] I.-H. Lee and R. M. Martin, "Applications of the generalized-gradient approximation to atoms, clusters, and solids," Physical Review B, vol. 56, p. 7197, 1997.
    [42] R. A. Buckingham, "The classical equation of state of gaseous helium, neon and argon," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 168, pp. 264-283, 1938.
    [43] L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, p. 98, 1967.
    [44] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
    [45] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, pp. 511-519, 1984.
    [46] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol. 31, p. 1695, 1985.
    [47] Y.-H. Shin, V. R. Cooper, I. Grinberg, and A. M. Rappe, "Development of a bond-valence molecular-dynamics model for complex oxides," Physical Review B, vol. 71, 2005.
    [48] M. All, "simulations made use of the LAMMPS code described by SJ Plimpton," J. Comput. Phys, vol. 117, 1995.
    [49] G. C. Costa, P. Saradhi Maram, and A. Navrotsky, "Thermodynamics of nanoscale lead titanate and barium titanate perovskites," Journal of the American Ceramic Society, vol. 95, pp. 3254-3262, 2012.
    [50] R. Eglitis and D. Vanderbilt, "Ab initio calculations of Ba Ti O 3 and Pb Ti O 3 (001) and (011) surface structures," Physical Review B, vol. 76, p. 155439, 2007.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE