簡易檢索 / 詳目顯示

研究生: 蘇利葉
Sulistyah, Umroh Dian
論文名稱: 三維空間資料基礎建設中之跨域分享-以三維建物為例
Towards the Cross-Domain Sharing in 3D SDI – An Example of 3D Buildings
指導教授: 洪榮宏
Hong-Hong, Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 126
中文關鍵詞: 三維空間資料基礎建設三維建物CityGML災害管理語意資料
外文關鍵詞: 3D Spatial Data Infrastructure (3D SDI), 3D Building, CityGML, Disaster Management, Semantic
相關次數: 點閱:184下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,三維數碼城市的的需求正逐漸成長中,各種不同的組織或機構均嘗試在常見的處理程序中引進三維空間資訊之相關技術及其應用。隨著相關技術的發展,具使用性之三維空間參考資料的數量、精度及類型也跟著多元化,但隨之而來的問題包括過度重複的資料建構,或者具較高應用價值的資訊其使用不夠充份,因而導致低效率的投資及過高的成本。此外,由於在空間資料基礎建設(SDI)中,三維空間資訊缺乏具通用性的處理及使用方式,故與三維空間域之相關應用知識仍然相當不足。為滿足將二維資料擴展至三維空間中應用之需求,須利用所提出的新技術把傳統的SDI改良成三維空間資料基礎建設(3D SDI)。在3D SDI中,前述問題皆能透過共享跨領域三維資料之方式被克服,進而達成不同的應用需求。
    在一座城市中,一般民眾所居住的建物與個人的生命財產安全息息相關,因此建物資訊在三維城市模型中往往被視為最重要的元素之一。然而現階段的應用例中大多仍僅以視覺化呈現為主要功能,故本文提出在3D SDI中的三維建物資料應至少包含該特徵物之建模、辨識、語意資料、細緻度、跨域連結及服務等議題。本研究將針對在災害管理應用中語意充分 (semantic-enriched) 三維建物資料的使用進行評估。依據CityGML的規範,首先建立具有「建物-樓層-戶」階層架構的三維建物資料,同時針對不同階層開發專門的辨識系統,以利辨別單一階層內的個別特徵物,並與其他不同來源的資料做連結,例如戶籍資訊。藉由回顧並比較過去之三維水災模擬研究分析的成果,本研究成果顯示此改良式的三維建物資料能有效針對特定階層之特徵物分析災害所造成之直接影響,亦能以視覺化方式呈現豐富的分析成果來輔助決策,例如:展示在特定樓層內有多少受困人數。由於SDI的優勢在於分享可靠度足夠之資訊、促進不同專業領域之應用以及避免重復性資料建構所導致的成本開支,故本研究建議有必要針對所提出的三維建物資料結構進一步檢視不同細緻度下的成果及更多樣化的呈現,以期更具經濟效益之發展應用。

    In recent years, the demands of 3D cyber-city have been steadily growing. Today's organizations are trying to introduce 3D applications and technologies in their day-to-day processes. Thus, it expands the availability of the quantity, accuracy, and type of spatially referenced 3D data. With this capacity also comes the potential for substantial effort of duplication or the underutilization of valuable information that often has been created at considerable cost and effort. Moreover, knowledge of this 3D domain is still lacking and partly due to the lack of a generic approach to handling and utilize the 3D geo-information in Spatial Data Infrastructure (SDI). To enable the requirement of extending 2D data into 3D, traditional SDI needs to evolve into 3D SDI with new proposed technology. Within 3D SDI, all of these problems can be overcome by cross-domain 3D data sharing to meet different application needs.
    With strong links to the citizens’ lives, building information is considered as the most important component in the 3D urban model. While many current applications are restricted to visualization only, we argue the 3D building data in 3D SDI must at least consider the issues of feature modeling, identification, semantics, level of details, cross-domain linking and services. This study intends to assess the use of the semantic-enriched 3D building data in the applications of disaster management. Based on CityGML, we first create 3D building data based on a hierarchy of building-storey-household representation. Identifier systems are respectively developed for each level of features for the purpose of identifying individual features and linking to other sources of data, e.g., the household registration information. By reviewing and comparing the outcomes of the past research of 3D flood simulation, we demonstrate the improved 3D building data additionally enables the direct impact analysis at the chosen level of features, as well as visually present enriched analyzed outcomes for decision making, e.g., the number of trapped people in specific floor. As the merits of the SDI is to share reliable information, encourage multiple-purpose applications and avoid duplicated spending, we thereby conclude the necessity to further examine the level of details and multiple representations of the serviced 3D building data for cost-effective application development.

    ABSTRACT i ACKNOWLEDGEMENT v CONTENTS vii LIST OF TABLES x LIST OF FIGURES xi CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Study Goal 4 1.3 Organization of Thesis 6 CHAPTER 2 LITERATURE REVIEW 8 2.1 Spatial Data Infrastructure (SDI) 8 2.1.1 The Evolution of SDI 8 2.1.2 The Definition of SDI 11 2.1.3 The SDI Components 13 2.1.4 The Hierarchy of SDI 17 2.1.5 Building SDIs and Role of Partnerships 19 2.2 Spatial Data Sharing 20 2.3 Disaster Management 21 2.3.1 Disaster Management Component 23 2.3.2 Types of Disaster Management 25 2.3.3 Data Needed in a Disaster Case 26 CHAPTER 3 A BIG PICTURE OF 3D SDI 30 3.1 The Importance of SDI 30 3.2 The Necessity of Going 3D 31 3.3 The Improvement from 2D to 3D SDI 33 3.4 The 3D SDI Implementation 34 3.5 Data and Institutional Issues 39 3.5.1 The Organizational Concept regarding Spatial Data Sharing and Exchange Willingness 40 3.5.2 Information System and Data Exchange Within Inter-Organizations 42 3.6 3D SDI: Study Case of Taiwan 46 3.6.1 Database Organizations 49 3.6.2 Role of Organization in 3D Spatial Data Sharing for Taiwan NSDI 58 CHAPTER 4 THE 3D BUILDINGS IN SDI PERSPECTIVE 64 4.1 The Necessity of 3D Building in SDI 64 4.2 The Characteristics of 3D Buildings 69 4.2.1 Geometry Structure 70 4.2.2 Spatial Semantic Information 72 4.2.3 Spatial Relations 74 4.3 Proposed Design: A Hierarchy of Building-Storey-Household 78 4.3.1 Building Level 84 4.3.2 Storey Level 85 4.3.3 Household Level 85 4.3.4 Integrating Information through Unique Identification Number 86 CHAPTER 5 IMPLEMENTATION AND DISCUSSIONS 90 5.1 Study Area and Data 92 5.1.1 Building and Storey Data 94 5.1.2 Household Data 98 5.1.3 Transportation Network 99 5.1.4 DEM and Flood Data 101 5.2 Visualization Results and Analysis 102 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 107 6.1 Conclusions 107 6.2 Future Works 110 REFERENCES 112

    Abdulharis, R., van Loenen, B., & Zevenbergen, B. (2005). Legal aspects of access to geo-information within Indonesian spatial data infrastructure. ISPRS Workshop on Service and Application of Spatial Data Infrastructure.
    Adda, P., Mioc, D., Anton, F., McGillivray, E., Morton, A., & Fraser, D. (2010). 3D flood-risk models of government infrastructure. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38(4W13).
    Agency, F. E. M. (2006). Techniques for the seismic rehabilitation of existing buildings. FEMA.
    Al-Wardi, A. H. M. (2015). Factors Impeding the Development of Oman Spatial Data Infrastructure. Universiti Teknologi Malaysia.
    Al, K. K., Rahman, A. A., Al, T. A., & Al, F. S. (2018). Development of A Framework for Implementing 3D Spatial data infrastructure in OMAN - Issues and challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII(September), 3–5.
    Al, K., & Rahman, A. A. (2019). Integration Between Surface and Subsurface Spatial Objects for Developing Oman 3D Sdi Based on the Citygml Standard. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4-W16(October), 79–84. https://doi.org/10.5194/isprs-archives-XLII-4-W16-79-2019
    Alizadehashrafi, B. (2019). Introducing a Customized Framework for 3D Spatial Data Infrastructure of Iran Based on OGC Standards. 3(1), 92–101. https://doi.org/10.22059/eoge.2019.285974.1056
    ANZLIC. (1996). Spatial Data Infrastructure for Australia and New Zealand. ANZLIC—The Spatial Information Council.
    Armenakis, C., Du, E. X., Natesan, S., Persad, R. A., & Zhang, Y. (2017). Flood risk assessment in urban areas based on spatial analytics and social factors. Geosciences, 7(4), 123.
    Azad, B., & Wiggins, L. L. (1995). Dynamics of inter-organizational geographic data sharing: A conceptual framework for research. Sharing Geographic Information, 2, 22–43.
    Benner, J., Geiger, A., Leinemann, K., Karlsruhe, F., Informatik, A., Benner, J., Geiger, A., & Leinemann, K. (2005). Flexible Generation of Semantic 3D Building Models. Workshop on Next Generation 3D City Models, 49, 17–22.
    Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889.
    Boonstra, J. J. (2004). Dynamics of organizational change and learning. Wiley Online Library.
    Borrero, S. (1998). Case study of transnational initiatives; Latin America. Proceedings 3rd GSDI Conference, 17, 19.
    Brenner, C. (2003). Building reconstruction from laser scanning and images. Proc. ITC Workshop on Data Quality in Earth Observation Techniques.
    Bullock, J. A., Haddow, G. D., & Coppola, D. P. (2017). Introduction to emergency management. Butterworth-Heinemann.
    Čada, V., & Janečka, K. (2016). The strategy for the development of the infrastructure for spatial information in the Czech Republic. ISPRS International Journal of Geo-Information, 5(3). https://doi.org/10.3390/ijgi5030033
    Calkins, H. W., & Weatherbe, R. (1995). Taxonomy of spatial data sharing. Sharing Geographic Information, 65–75.
    Car, A. (1997). Hierachical Spatial Reasoning: Theoretical Consideration and its Application to Modeling Wayfinding, Geoinfo Series, Vol. 10, Dept. of Geoinformation, Technical University of Vienna, published Ph. D. thesis, Viennna, Austria.
    Cardona, O. D., Van Aalst, M. K., Birkmann, J., Fordham, M., Mc Gregor, G., Rosa, P., Pulwarty, R. S., Schipper, E. L. F., Sinh, B. T., & Décamps, H. (2012). Determinants of risk: exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (pp. 65–108). Cambridge University Press.
    Chan, T. O. (1999). The different identities of GIS and GIS diffusion. International Journal of Geographical Information Science, 13(3), 267–281.
    Chappell, D. J., Loechel, D., Søndergaard, N., & Tanner, G. (2014). Dynamical energy analysis on mesh grids: A new tool for describing the vibro-acoustic response of complex mechanical structures. Wave Motion, 51(4), 589–597.
    Chen, Y., Hong, T., Luo, X., & Hooper, B. (2018). Development of City Buildings Dataset for Urban Building Energy Modeling. Energy and Buildings, 183. https://doi.org/10.1016/j.enbuild.2018.11.008
    Chow, S. (2015). Explore Large Semantic CityGML 3D City Models with 3DCityDB | cesium.com. https://cesium.com/blog/2015/08/29/3dcitydb/
    Christen, P. (2012). Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection. Springer Science & Business Media.
    Coleman, D. J., & McLaughlin, J. D. (1998). Defining global geospatial data infrastructure (GGDI): components, stakeholders and interfaces. GEOMATICA-OTTAWA-, 52, 129–143.
    Committee, F. G. D. (1997). Framework introduction and guide. Washington, DC: Federal Geographic Data Committee.
    Council, N. R. (1993). Toward a Coordinated Spatial Data Infrastructure for the Nation. The National Academies Press. https://doi.org/10.17226/2105
    Craig, W. J., & Elwood, S. A. (1998). How and why community groups use maps and geographic information. Cartography and Geographic Information Systems, 25(2), 95–104.
    Eagleson, S., Escobar, F., & Williamson, I. P. (1999). Spatial Hierarchical Reasoning Applied to Administration Boundary Design Using GIS. To be presented at 6th South East Asian Surveyors Congress. Fremantle.
    Ehrlich, D., & Tenerelli, P. (2013). Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments. Natural Hazards, 68(3), 1271–1289. https://doi.org/10.1007/s11069-012-0372-5
    Eicker, U., Zirak, M., Bartke, N., Romero Rodriguez, L., & Coors, V. (2018). New 3D model based urban energy simulation for climate protection concepts. Energy and Buildings, 163. https://doi.org/10.1016/j.enbuild.2017.12.019
    Fischer, A., Kolbe, T. H., Lang, F., Cremers, A. B., Förstner, W., Plümer, L., & Steinhage, V. (1998). Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D. Computer Vision and Image Understanding, 72(2), 185–203.
    Foley, J. D., Van, F. D., Van Dam, A., Feiner, S. K., Hughes, J. F., Angel, E., & Hughes, J. (1996). Computer graphics: principles and practice (Vol. 12110). Addison-Wesley Professional.
    GaŸdzicki, J., & Linsenbarth, A. (2004). GIS IN POLAND : DEVELOPMENT TOWARDS SDI GIS W POLSCE : ROZWÓJ UKIERUNKOWANY NA INFRA-. Polish Association for Spatial Information.
    Gröger, G., Kolbe, T. H., & Czerwinski, A. (2006). Candidate OpenGIS® CityGML Implementation Specification (City Geography Markup Language). Water, 3, 0–119.
    Gröger, G., & Plümer, L. (2012). CityGML–Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33.
    Groot, R. (1997). Spatial data infrastructure (SDI) for sustainable land management. ITC Journal, 3(4), 287–294.
    Grus, L., Crompvoets, J., & Bregt, A. (2006). Systems. November, 6–10.
    Gunes, A. E., & Kovel, J. P. (2000). Using GIS in emergency management operations. Journal of Urban Planning and Development, 126(3), 136–149.
    Healey, P. (2003). Collaborative planning in perspective. Planning Theory, 2(2), 101–123.
    Herman, L., Russnák, J., & Řezník, T. (2017). Flood modelling and visualizations of floods through 3D open data. International Symposium on Environmental Software Systems, 139–149.
    Herring, J. (2001). The OpenGIS abstract specification, Topic 1: Feature geometry (ISO 19107 Spatial schema), version 5. OGC Document, 01–101.
    Herzog, T. N., Scheuren, F. J., & Winkler, W. E. (2007). Data Quality and Record Linkage Techniques (1st ed.). Springer Publishing Company, Incorporated.
    Hildebrandt, D., & Timm, R. (2014). An assisting, constrained 3D navigation technique for multiscale virtual 3D city models. GeoInformatica, 18(3), 537–567.
    Hjelmager, J., Moellering, H., Cooper, A., Delgado, T., Rajabifard, A., Rapant, P., Danko, D., Huet, M., Laurent, D., & Aalders, H. (2008). An initial formal model for spatial data infrastructures. International Journal of Geographical Information Science, 22(11–12), 1295–1309.
    Ho, S., Rajabifard, A., Stoter, J., & Kalantari, M. (2013). Legal barriers to 3D cadastre implementation: What is the issue? Land Use Policy, 35, 379–387.
    Hossain, A. K. M. A., Jia, Y., Ying, X., Zhang, Y., & Zhu, T. T. (2011). Visualization of urban area flood simulation in realistic 3d environment. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, 1973–1980.
    Hossain, M. (2008). POSSIBILITY OF SPATIAL DATA INFRASTRUCTURE (SDI) APPLICATION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. http://www.isprs.org/proceedings/XXXVII/congress/4_pdf/29.pdf
    House, W. (1993). The national information infrastructure: Agenda for action. The White House, Washington DC.
    Huder, R. C. (2013). Disaster operations and decision making. John Wiley & Sons.
    Imre, Ö. (2017). Adopting Information Systems Perspectives from Small Organizations (Vol. 1895). Linköping University Electronic Press.
    ISDR, U. N., & OCHA, U. N. (2008). Disaster preparedness for effective response: guidance and indicator package for implementing priority five of the Hyogo Framework. United Nations, New York, Geneva.
    Isikdag, U., Zlatanova, S., & Underwood, J. (2013). A BIM-Oriented Model for supporting indoor navigation requirements. Computers, Environment and Urban Systems, 41, 112–123.
    Islam, T., & Ryan, J. (2015). Hazard mitigation in emergency management. Butterworth-Heinemann.
    J. Boonstra, J., & Bennebroek Gravenhorst, K. M. (1998). Power dynamics and organizational change: A comparison of perspectives. European Journal of Work and Organizational Psychology, 7(2), 97–120.
    Jacquinod, F., & Bonaccorsi, J. (2019). Studying Social Uses of 3D Geovisualizations: Lessons Learned from Action-Research Projects in the Field of Flood Mitigation Planning. ISPRS International Journal of Geo-Information, 8(2), 84.
    Kapucu, N. (2012). Disaster and emergency management systems in urban areas. Cities, 29, S41–S49.
    Kausika, B., Moshrefzadeh, M., Kolbe, T. H., & van Sark, W. (2016). 3D Solar Potential Modelling and Analysis: A case study for the city of Utrecht. 32nd European Photovoltaic Solar Energy Conference and Exhibition, EUPVSEC 2016.
    Kelly, P. (1996). The future of spatial data infrastructures. Geomatics Info Magazine, 10(6), 6–8. https://doi.org/10.1201/9780429505904-12
    Kilsedar, C. E., Fissore, F., Pirotti, F., & Brovelli, M. A. (2019). Extraction and visualization of 3D building models in urban areas for flood simulation.
    Kitsakis, D., & Dimopoulou, E. (2016). Possibilities of integrating Public Law Restrictions to 3D Cadastre. Proceedings of 5th International FIG 3D Cadastre Workshop, 18–20.
    Knoth, L., Scholz, J., Strobl, J., Mittlböck, M., Vockner, B., Atzl, C., Rajabifard, A., & Atazadeh, B. (2018). Cross-domain building models—a step towards interoperability. ISPRS International Journal of Geo-Information, 7(9). https://doi.org/10.3390/ijgi7090363
    Kok, B., & Van Loenen, B. (2005). How to assess the success of National Spatial Data Infrastructures? Computers, Environment and Urban Systems, 29(6), 699–717.
    Kolbe, T. H. (2009). Representing and Exchanging 3D City Models with CityGML BT - 3D Geo-Information Sciences (J. Lee & S. Zlatanova (eds.); pp. 15–31). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-87395-2_2
    Kolbe, T. H., Gröger, G., & Plümer, L. (2005). CityGML: Interoperable access to 3D city models. In Geo-information for disaster management (pp. 883–899). Springer.
    Kubicek, H., Cimander, R., & Scholl, H. J. (2011). Organizational interoperability in e-government: lessons from 77 European good-practice cases. Springer Science & Business Media.
    Kumar, K., Ledoux, H., & Stoter, J. (2018). DYNAMIC 3D VISUALIZATION OF FLOODS: CASE OF THE NETHERLANDS. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
    Kuo, F.-Y. (2018, April 17). Future development trend of 3D geographic information Future development trend of 3D geographic information. National Development Council.
    Kwan, M.-P., & Lee, J. (2005). Emergency response after 9/11: the potential of real-time 3D GIS for quick emergency response in micro-spatial environments. Computers, Environment and Urban Systems, 29(2), 93–113. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2003.08.002
    Larson, J., & Shaw, A. (2013, December 31). How We Made the 3-D New York City Flood Map — ProPublica. Pro Publica. https://www.propublica.org/nerds/how-we-made-the-3-d-new-york-city-flood-map
    Lia, P., Lan, W., & Xiao, X. (2008). SDI in China: Progress and issues. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37. http://isprsserv.ifp.uni-stuttgart.de/proceedings/XXXVII/congress/4_pdf/02.pdf
    Liu, L., & Zlatanova, S. (2011). A" door-to-door" path-finding approach for indoor navigation. Proceedings Gi4DM 2011: GeoInformation for Disaster Management, Antalya, Turkey, 3-8 May 2011.
    Mansourian, A., Rajabifard, A., Valadan Zoej, M., & Williamson, I. (2004). Facilitating Disaster Management Using SDI. Journal of Geospatial Engineering, 6(December 2013).
    Mansourian, Ali, Rajabifard, A., Zoej, M. J. V., & Williamson, I. (2006). Using SDI and web-based system to facilitate disaster management. Computers & Geosciences, 32(3), 303–315.
    Masser, I. (2002). Report on A comparative analysis of NSDI’s in Australia, Canada and the United States. October (p. 9). UK.
    Masser, Ian. (2005). GIS Worlds: Creating Spatial Data Infrastructures. https://doi.org/10.13140/RG.2.1.3358.2565
    McDougall, K., & Professor Iams Williamson and Dr, A. R. (2006). A Local-State Government Spatial Data Sharing Partnership Model to Facilitate SDI Development. Department of Geomatics, School of Engineering, Centre for SDI and Land Administration, PhD Thesis, 332 pages. http://www.csdila.unimelb.edu.au/publication/thesis/Kevin_Mcdougall_PhD_Thesis.pdf
    Moreira, J. M. M., Nex, F., Agugiaro, G., Remondino, F., & Lim, N. J. (2013). From DSM to 3D building models: a quantitative evaluation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, W1.
    Murgante, B., Di Donato, P., Berardi, L., Salvemini, M., & Vico, F. (2011). Plan4all: European Network of Best Practices for Interoperability of Spatial Planning Information. 2011 International Conference on Computational Science and Its Applications, 286–289.
    Nebert, D. (2004). Developing Spatial Data Infrastructures: The SDI Cookbook v. 2.0. Global Spatial Data Infrastructure.
    OGC, ISO, I. (2015). A Guide to the Role of Standards in Geospatial Information Management. August, 1–27. http://ggim.un.org/meetings/GGIM-committee/8th-Session/documents/Standards_Guide_2018.pdf
    OGC, ISO, I. (2018). A Guide to the Role of Standards in Geospatial Information Management. August, 1–27. http://ggim.un.org/meetings/GGIM-committee/8th-Session/documents/Standards_Guide_2018.pdf
    Onsrud, H., & Craglia, M. (2003). Introduction to the special issues on access and participatory approaches in using geographic information. Urisa Journal, 15(1), 5–7.
    Onsrud, H. J., & Rushton, G. (1995). Sharing geographic information. Center for Urban Policy Research New Brunswick, NJ.
    Painho, M., Santos, M. Y., & Pundt, H. (2010). Geospatial thinking. Springer Science & Business Media.
    Pasquier, U., He, Y., Hooton, S., Goulden, M., & Hiscock, K. M. (2019). An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change. Natural Hazards, 98(3), 915–937.
    Petch, J. (2019). GIS, organisations and people: A socio-technical approach. CRC Press.
    Peterson, M. P. (2012). Online maps with APIs and WebServices. Springer Science & Business Media.
    Pinto, J. K., & Onsrud, H. J. (1995). Sharing geographic information across organizational boundaries: a research framework. Sharing Geographic Information, 44–64.
    Putra, T. Y. D., Sekimoto, Y., & Shibasaki, R. (2019). Toward the evolution of national spatial data infrastructure development in Indonesia. ISPRS International Journal of Geo-Information, 8(6). https://doi.org/10.3390/ijgi8060263
    Rajabifard, A., Feeney, M.-E. F., & Williamson, I. P. (2002). Future directions for SDI development. International Journal of Applied Earth Observation and Geoinformation, 4(1), 11–22.
    Rajabifard, A., & Williamson, I. P. (2001). Spatial data infrastructures: concept, SDI hierarchy and future directions.
    Rajabifard, A., Williamson, I. P., Holland, P., & Johnstone, G. (2000). From Local to Global SDI initiatives: a pyramid building blocks. 4th Global Spatial Data Infrastructure Conference, Cape Town, South Africa, 13–15.
    Reichardt, M. E., & Moeller, J. (2000). SDI Challenges for a New Millennium-NSDI at a Crossroads: Lessons Learned and Next Steps. 4th Global Spatial Data Infrastructures Conferences, 13–15.
    Rezgui, Y., Wilson, I., Olphert, W., & Damodaran, L. (2005). Socio-organizational issues. In Virtual Organizations (pp. 187–198). Springer.
    Salim, M. J. (2017). 3D Spatial Information Intended for SDI: A Literature Review, Problem and Evaluation. Journal of Geographic Information System, 09(05), 535–545. https://doi.org/10.4236/jgis.2017.95033
    Skakun, S., Kussul, N., Shelestov, A., & Kussul, O. (2014). Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia. Risk Analysis, 34(8), 1521–1537. https://doi.org/10.1111/risa.12156
    Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models. Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007 in Enschede, The Netherlands, 13-15 June 2007. http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf
    Stoter, J., Vosselman, G., Goos, J., Zlatanova, S., Verbree, E., Klooster, R., & Reuvers, M. (2011). Towards a national 3D spatial data infrastructure: Case of the Netherlands. Photogrammetrie, Fernerkundung, Geoinformation, 2011(6), 405–420. https://doi.org/10.1127/1432-8364/2011/0094
    Sulistyah, U. D., & Hong, J. H. (2019). The use of 3D building data for disaster management: A 3D SDI perspective. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W8), 395–402. https://doi.org/10.5194/isprs-archives-XLII-3-W8-395-2019
    Sun, X. (2015). Semantic 3D Building Model Construction for Smart Urban Management. January 2015. https://doi.org/10.2991/itms-15.2015.136
    Taiwan GIS Center. (2018, June 12). Smart City and Citizen Collaboration: 2D / 3D GIS Platform as a Tool. Taiwan GIS Center. http://www.tgic.org.tw/content/GisNewsView.aspx?contID=ce8d7ef0-c2d1-404e-adcb-2595812c0cc5-8957
    Thieman, F., & Sester, M. (2004). Segmentation of buildings for 3D generalization, Working paper of the ICA workshop on generalization and multiple representation. Leicester, UK.
    Thill, J.-C., Dao, T. H. D., & Zhou, Y. (2011). Traveling in the three-dimensional city: applications in route planning, accessibility assessment, location analysis and beyond. Journal of Transport Geography, 19(3), 405–421.
    Tiainen, E. (2017). Linked Data Deployment for Spatial Data Infrastructure in Finland Linked Data Deployment for Spatial Data Infrastructure in Finland. March.
    Timpf, S., & Frank, A. U. (1997). Using hierarchical spatial data structures for hierarchical spatial reasoning. International Conference on Spatial Information Theory, 69–83.
    Tonchovska, R., Stanley, V., & De Martino, S. (2012). Spatial Data Infrastructure and INSPIRE.
    Tosta, N. (1998). NSDI was supposed to be a verb: a personal perspective on progress in the evolution of the US National Spatial Data Infrastructure. Integrating Information Infrastructures with Geographic Information Technology, London: Taylor and Francis, 13–24.
    Trakas, A., Janssen, P., & Stoter, J. (2012). Advancing Open 3D Modelling Standards in National Spatial Information Policy. European Journal of EPractice, September, 68–79.
    Tymkow, P., Karpina, M., & Borkowski, A. (2016). 3D GIS FOR FLOOD MODELLING IN RIVER VALLEYS. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
    UNISDR, C. (2015). The human cost of natural disasters: A global perspective.
    Valachamy, M., Sahibuddin, S., Ahmad, N. A., & Bakar, N. A. A. (2019). A Review of MyGDI: The Catalyst of the evolution of Geographical Information Systems in Malaysian Public Sector. Open International Journal of Informatics (OIJI), 7(2), 127–137.
    Van Loenen, B., & van Rij, E. (2008). Assessment of Spatial Data Infrastructures from an organisational perspective. A Multi-View Framework to Assess Spatial Data Infrastructures. Melbourne: University of Melbourne, 173–192.
    Verbree, E., Stoter, J., Zlatanova, S., De Haan, G., Reuvers, M., Vosselman, G., Goos, J., Van Berlo, L., & Klooster, R. (2010). A 3d model for geo-information in the netherlands. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38(November).
    Wang, N., Vlachokostas, A., Borkum, M., Bergmann, H., & Zaleski, S. (2019). Unique Building Identifier: A natural key for building data matching and its energy applications. Energy and Buildings, 184, 230–241. https://doi.org/10.1016/j.enbuild.2018.11.052
    Warnecke, L., Decker, D., Pelch, L., Davis, S., & Gilligan, J. (2003). Statewide Leadership and Coordination of Geographic Information and Related Technology in the 50 States-NSGIC State Summaries. Report to National States Geographic Information Council.
    Warnest, M., McDougall, K., Rajabifard, A., & Williamson, I. (2003). Local and state-based collaboration: the key to unlocking potential of SDI. Spatial Sciences 2003, 13. http://www.sli.unimelb.edu.au/research/publications/IPW/Spatial Sciences-2003-Mathew.pdf
    Williamson, I. P., Rajabifard, A., & Feeney, M.-E. F. (2003). Developing spatial data infrastructures: from concept to reality. CRC Press.
    Williamson, I., Rajabifard, A., & Binns, A. (2006). Challenges and issues for SDI development. International Journal of Spatial Data Infrastructures Research, 1(1), 24–35.
    Wu, H. (2010). Survey on three-dimensional spatial data models in GIS. 2010 The 2nd Conference on Environmental Science and Information Application Technology, 2, 492–495.
    Yang, B., Li, Q., & Li, D. (2000). Building model creating and storing in 3D urban GIS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 33, 1192–1198.
    Yudono, A. (2015). Potential National Spatial Data Infrastructure (Nsdi) and Voluntereed Geographic Information (Vgi) Integration To Achieve Seamless-Updating-Reliable Spatial Planning Information From National Through Local Governance Level in Indonesia. Jurnal Ilmiah Geomatika, 21(2), 115–130. https://doi.org/10.24895/JIG.2015.21-2.%X
    Zhang, H., Li, Y., Liu, B., & Liu, C. (2014). The application of GIS 3D modeling and analysis technology in real estate mass appraisal - Taking landscape and sunlight factors as the example. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(4), 363–367. https://doi.org/10.5194/isprsarchives-XL-4-363-2014

    下載圖示 校內:2022-03-01公開
    校外:2022-03-01公開
    QR CODE