簡易檢索 / 詳目顯示

研究生: 黃雅歆
Huang, Ya-Hsin
論文名稱: 水相法合成銅奈米立方體與硫化鉛奈米粒子之形狀控制
Synthesis of Copper Nanocubes and the Shape Control of Lead Sulfide Nanoparticles in Aqueous Solution
指導教授: 吳欣倫
Wu, Hsin-Lun
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 水相合成奈米粒子銅奈米立方體硫化鉛形狀控制鹵素
外文關鍵詞: Nanoparticles, Copper, nanocubes, shape control, halogen, lead sulfide
相關次數: 點閱:111下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行銅奈米立方體的水相合成與硫化鉛奈米粒子之形狀控制,透過變因調控成功合成產率85 % 之58.3 nm銅奈米立方體,並且發現水相法中透過調控鹵素離子得以造成硫化鉛之形狀變化。
    銅奈米立方體之合成,透過改變還原劑、溫度、表面吸附劑與pH值進行銅奈米立方體之形狀調控。發現還原劑濃度影響銅奈米粒子之尺寸與形狀; 溫度影響到反應時間與產物均勻度; 表面吸附劑HDA影響銅奈米粒子之形狀與pH值; 並且透過添加NaOH以達到提升pH值但是降低線性產物之功能。最終透過添加1.00 mM NaOH的抗壞血酸29.0 mM作為還原劑,還原2.00 mM CuCl2並且以7.50 mM HDA做為表面吸附劑放置烘箱80 oC反應兩小時,合成產率為85 % 粒徑為58.3 nm之銅奈米立方體。
    硫化鉛奈米粒子之形狀控制,透過改變表面吸附劑CTAC和CTAB的量,發現其形狀之變化: 當CTAB濃度增加時硫化鉛奈米粒子從立方體變成八面體; 當CTAC濃度增加時硫化鉛奈米粒子從立方體變成多面體。為了探討對於硫化鉛離子形狀影響之因素,透過外加鹵素離子氯、溴與碘進行硫化鉛之形狀控制,發現在本實驗方法中添加氯離子並沒有顯著的形狀改變,由此推論CTAC濃度增加對於形狀之影響來自介面活性劑陽離子之影響; 發現隨著溴離子濃度增加可以硫化鉛奈米粒子從立方體變成八面體,表示CTAB濃度之增加對於硫化鉛奈米粒子之形狀影響主要來自溴離子之影響; 碘離子對於硫化鉛沉澱反應變化明顯,低濃度的碘離子外加進行反應後會生成非預期之產物。

    In this study, we used aqueous phase methods for the synthesis of two materials: (1) Synthesis of copper nanocubes. By adjusting reducing agent, temperature, capping agent and pH value, we synthesized 58.3 nm Cu nanocubes with 85% yield. (2) The shape control of lead sulfide by adjusting halogen ions. By adjusting the concentration of capping agent CTAC and CTAB, we found the change of the shape. With adding halogen ions: chlorine, bromine, and iodine, we found the changes of the PbS. There was no significant with the addition of chlorine ion; with the increment of bromide ions, the lead sulfide nanoparticles could be changed from cubes to octahedrons; in the precipitate reaction of lead sulfide, the iodide ions changed the reaction significantly. With low concentration of iodide ion added to the reaction, unexpected products were generated.

    第一章、 奈米粒子形狀控制 1 1. 1 奈米材料簡介 1 1. 2 奈米材料形狀控制 5 1. 3 金屬奈米材料形狀控制與合成方式 8 1. 3. 1 多元醇合成法 8 1. 3. 2 植晶法 10 1. 3. 3 電化學法 11 1. 3. 4 聲化學製備法 13 1. 4 半導體奈米材料形狀控制 13 1. 5 參考資料 15 第二章 水相合成銅奈米立方體 18 2. 2 實驗設計與流程 19 2. 2. 1 藥品 19 2. 2. 2. 還原劑抗壞血酸作為變因之調控 19 2. 2. 3. 溫度作為變因之調控 20 2. 2. 4. 表面吸附劑作為變因之調控 20 2. 2. 5. 透過氫氧化鈉進行pH值之調控 21 2. 2. 6. 儀器 21 2. 3 結果與討論 22 2. 3. 1 還原劑劑量變因 22 2. 3. 2 溫度變因 34 2. 3. 4 透過添加氫氧化鈉進行pH值調控 41 2. 3. 5 探討表面吸附劑和氫氧化鈉對pH值的影響 46 2. 4 結論 51 2. 5 參考資料 53 第三章、水相合成中硫化鉛奈米材料之形狀控制 55 3. 1 文獻回顧 55 3. 2 實驗設計與流程 56 3. 2. 1 藥品 56 3. 2. 2 參考方法 57 3. 2. 3 表面吸附劑CTAB的影響探討 57 3. 2. 4 表面吸附劑CTAC的影響探討 58 3. 2. 3 探討溴離子對於PbS奈米粒子生成之影響 58 3. 2. 4 探討氯離子對於PbS奈米粒子生成之影響 59 3. 2. 5 探討碘離子對於PbS生成之影響 60 3. 2. 6 實驗儀器 61 3. 3 結果與討論 61 3. 3. 1 表面吸附劑 CTAB濃度的影響 61 3. 3. 2 表面吸附劑 CTAC濃度的影響 65 3. 3. 3 溴離子在PbS奈米粒子生成反應中的影響 69 3. 3. 4 氯離子在PbS奈米粒子生成反應中的影響 75 3. 3. 5 碘離子在PbS奈米粒子生成反應中的影響 81 3. 4 結論 87 3. 5 參考文獻 88

    Chapter 1
    (1) Fahlman B. D. Materials Chemistry, Vol. 1, Springer, Mount Pleasant, 2007, pp. 282 – 283.
    (2) Halperin W. P. Rev. Mod. Phys. 1986, 58, 533.
    (3) Bawendi M. G.; Steigerwald M. L.; Brus L. E.; Rev. Phys. Chem. 1990, 41, 477.
    (4) Somorjai G. A. Chem. Rev. 1996, 96, 1223.
    (5) Templeton A. C.; Wuelfing W. P.; Murray R. W. Acc. Chem. Res. 2000, 33, 27.
    (6) Sanders A. W.; Routenberg D. A.; Wiley B. J.; Xia Y.; Dufresne E. R.; Reed M. A.; Nano Lett. 2006, 6, 1822.
    (7) Wang H.; Brandl D. W.; Nordlander P.; Halas N. J. Acc. Chem. Res. 2007, 40, 53.
    (8) Yang X.; Skrabalak S. E.; Li Z. Y.; Xia Y.; Wang L. V. Nano Lett. 2007, 7, 3798.
    (9) Skrabalak S. E.; Au L.; Lu X.; Li X.; Xia Y. Nanomedicine. 2007, 2, 657.
    (10) Wu, H. L.; Kuo, C. H.; Huang, M. H. Langmuir. 2010, 26, 12307.
    (11) Sun, Y.; Xia, Y. Adv. Mater. 2002, 14, 833.
    (12) Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. J. Phys. Chem. B 2006, 110, 15666.
    (13) Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z. Y.; Xia, Y. Langmuir. 2006, 22, 8563.
    (14) Heo, J.; Kim, D. S.; Kim, Z. H.; Lee, Y. W.; Kim, D.; Kim, M.; Han, S. W. Chem. Comm. 2008, 46, 6120.
    (15) Xu, R.; Wang, D. S.; Zhang, J. Y.; Li, Y. D. Chem.-Asian J. 2006, 1, 888.
    (16) Tiwari, D. K.; Behari, J.; Sen, P. Current Science. 2008, 95, 647.
    (17) Wiley B. J.; Chen Y.; McLellan J.; Xiong Y.; Li Z.-Y.; Ginger D.; Xia Y. Nano Lett. 2007, 7, 1032.
    (18) Wang, Y.; Tang, A.; Li, K.; Yang, C.; Wang, M.; Ye, H.; Teng, F. Langmuir. 2012, 28, 16436.
    (19) Murray, C. B.; Noms, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
    (20) Huang, M. H.; Naresh, G.; Chen, H. S. ACS Appl. Mater, Interfaces. 2018, 10, 4.
    (21) Duan, T.; Lou, W.; Wang, X.; Xue, Q. Physicochem. Eng. Aspects. 2007, 310, 86.
    (22) Behera, D.; Acharya, B. S. Journal of luminescence. 2008, 128, 1577.
    (23) Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature. 2000, 404, 59.
    (24) Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. J. Am. Chem. Soc. 2011, 134, 1261.
    (25) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60.
    (26) Xiong Y.; Xia Y.; Adv. Mater. 2007, 19, 3385.
    (27) Ha, T. H.; Koo, H. J.; Chung, B. H. J. Phys. Chem. C. 2007, 111, 1123.
    (28) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153.
    (29) Wu, H. L.; Kuo, C. H.; Huang, M. H. Langmuir. 2010, 26, 12307.
    (30) Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science. 1996, 272, 1924.
    (31) Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Dalton Trans. 2015, 44, 17883.
    (32) Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Chem. Eur. J. 2005, 11, 454.
    (33) Xia, X.; Zeng, J.; Oetjen, L. K.; Li, Q.; Xia, Y. J. Am. Chem. Soc. 134, 3, 1793.
    (34) Pastoriza-Santos; Marzán L. Adv. Funct. Mater. 2009, 19, 679.
    (35) Kweskin S. J.; Rioux R. M.; Song H.; Komvopoulos K.; Yang P.; Somorjai G. A. ACS Catal. 2012, 2, 2377.
    (36) Tsuji M.; Matsuo R.; Jiang P.; Miyamae N.; Ueyama D.; Nishio M.; Hikino S.; Kumagae H.; Kamarudin K. S. N.; Tang X.-L. Cryst. Growth Des. 2008, 8, 2528.
    (37) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
    (38) Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem B 2001, 105, 4065.
    (39) Reetz, M. T.; Helbig, W. J. Am. Chem. Soc. 1994, 116, 7401.
    (40) Reetz, M. T.; Winter, M.; Breinbauer, R.; Thomas, T.-A.; Vogel, W. Chem. Eur. J. 2001, 7, 1084.
    (41) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. Chris. J. Phys. Chem. B 1997, 101, 6661.
    (42) Kortenaar, M. V. ten.; Kolar, Z. I.; Tichelaar, F. D. J. Phys. Chem. B 1999, 103, 2054.
    (43) Okitsu, K.; Bandow, H.; Maeda, Y. Chem. Mater. 1996, 8, 315.
    (44) Zhang, J.; Du, J.; Han, B.; Liu, Z.; Jiang, T.; Zhang, Z. Angew. Chem. Int. Ed. 2006, 45, 1116.
    (45) Dhas, N. A.; Raj, C. P.; Gedanken, A. Chem. Mater. 1998, 10, 1446.
    (46) Mizukoshi, Y.; Oshima, R.; Maeda, Y.; Nagata, Y. Langmuir, 1999, 15, 2733.
    (47) Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. J. Am. Chem. Soc. 2011, 134, 1261.
    (48) Ho, J. Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.
    (49) Liu, G.; Yin, L.-C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H.-M. Adv. Mater. 2015, 27, 3507.
    (50) Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672.

    Chapter 2.
    (1) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
    (2) Li, G.; Li, X. H.; Zhang, Z. J. Prog. Chem. 2011, 23, 1644.
    (3) Huang, H.; Huang, W.; Xu, Y.; Ye, X.; Wu, M.; Shao, Q.; Ou, G.; Peng, Z.; Shi, J.; Chen, J.; Feng, Q.; Zan, Y.; Huang, H.; Hu, P. Catal. Today. 2015, 258, 627.
    (4) Ahmed, A.; Elvati, P.; Violi, A. RSC Adv. 2015, 5, 35033.
    (5) Mondal, J.; Biswas, A.; Chiba, S.; Zhao, Y. Sci. Rep. 2015, 5, 8294.
    (6) Hsia, C. F.; Madasu, M.; Huang, M. H. Chem. Mater.2016, 28, 3073.
    (7) Kim, D. Y.; Im, S. H.; Park, O. O.; Lim, Y. T. CrystEngComm 2010, 12, 116.
    (8) Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem., Int. Ed. 2011, 50, 12542.
    (9) Niu, W.; Zhang, L.; Xu, G. Acs Nano 2010, 4, 1987.
    (10) Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757.
    (11) Wu, H. L.; Kuo, C. H.; Huang, M. H. Langmuir. 2010, 26, 12307.
    (12) Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722.
    (13) Cui, F.; Yu, Y.; Dou, L.; Sun, J.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. Nano Lett. 2015, 15, 7610 − 7615.
    (14) Yang, H. J.; He, S. Y.; Chen, H. L.; Tuan, H. Y. Chem. Mater. 2014, 26, 1785.
    (15) Mott, D.; Galkowski, J.; Wang, L. Y.; Luo, J.; Zhong, C. J. Langmuir 2007, 23, 5740.
    (16) Song, X.; Sun, S.; Zhang, W.; Yin, Z. J. Colloid Interface Sci. 2004, 273, 463.
    (17) Yu, J. C.; Zhao, F. G.; Shao, W.; Ge, C. W.; Li, W. S. Nanoscale 2015, 7, 8811.
    (18) Hokita, Y.; Kanzaki, M.; Sugiyama, T.; Arakawa, R.; Kawasaki, H. ACS Appl. Mater. Interfaces, 2015, 7, 19382.
    (19) Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Angew. Chem., Int. Ed. 2011, 50, 10560.
    (20) Mahesh, M.; Hsia, C. F.; Huang, M. H. Nanoscale 2017, 9, 6970.
    (21) Cui, F.; Dou, L.; Yang, Q.; Yu, Y.; Niu, Z., Sun, Y.; Yang, P. J. Am. Chem. Soc. 2017, 139, 3027.
    (22) Van Ingen R.P.; Fastenau R.H.J.; Mittemeijer E.J. J. Appl. Phys. 1994, 76, 1871.
    (23) Savin, A.; Silvi, B.; Colonna, F. Can. J. Chem., 1996, 74, 1088.
    (24) Xiong Y.; Xia Y. Adv. Mater. 2007, 19, 3385.
    (25) Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Cryst. Growth Des. 2011, 11, 3375.
    (26) Oh, Y. J.; Park, G. S.; Chung, C. H. J. Electrochem. Soc. 2006, 153, G617.

    Chapter 3
    (1) Zhao N.; Qi L. Adv. Mater. 2006, 18, 359.
    (2) McDonald S. A.; Konstantatos G.; Zhang S.; Cyr P. W.; Klem E. J. D.; Levina L.; Sargent E. H. Nat. Mater. 2005, 4, 138.
    (3) Takagahara, T.; Takeda, K. Phys. Rev. B. 1992, 46, 15578.
    (4) Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
    (5) Zhu, J.; Liu, S.; Palchik, O.; Koltypin, Y.; Gedanken, A. J. Solid State Chem. 2000,153, 342.
    (6) Chen, S.; Liu, W. Mater. Chem. Phys. 2006, 98, 183.
    (7) Tan, C. S.; Chen, H. S.; Chiu, C. Y.; Wu, S. C.; Chen, L. J.; Huang, M. H. Chem. Mater. 2016, 28, 1574.
    (8) Huang, M. H.; Naresh, G.; Chen, H. S. ACS Appl. Mater. Interfaces, 2017, 10, 4.
    (9) Chen, H. S.; Wu, S. C.; Huang, M. H. Dalton Trans. 2015, 44, 15088.
    (10) Wang, Y.; Tang, A.; Li, K.; Yang, C.; Wang, M.; Ye, H.; Teng, F. Langmuir 2012, 28, 16436.
    (11) Wang, Y.; Yang, X.; Xiao, G.; Zhou, B.; Liu, B.; Zou, G.; Zou, B. CrystEngComm, 2013, 15, 5496.
    (12) Kaur, M.; Nagaraja, C. M. RSC Advances, 2016, 6, 56790.
    (13) Duan, T.; Lou, W.; Wang, X.; Xue, Q. Colloids and (14) Abe, S.; Mochizuki, K.; Masumoto, K. Journal of the Japan Institute of Metals,1992, 56, 1479.
    (15) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60.

    下載圖示 校內:2023-07-04公開
    校外:2023-07-04公開
    QR CODE