簡易檢索 / 詳目顯示

研究生: 林忠信
Lin, Chung-Shin
論文名稱: 海水微藻之分離程序的研究
Studies on Separation Processes of Marine Microalgae
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 海水微藻分離程序pH調控影像分析
外文關鍵詞: marine microalgae, separation processes, pH control, image analysis
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於微藻生長週期短,可藉由光合作用固定大氣中的二氧化碳並轉換成生物質,應用於高附加價值的多元不飽和脂肪酸、天然色素的生產及生質能源的研究。現在微藻的發展因分離成本不符合經濟效益,使得商業化受到相當大的侷限,因此本研究利用低價格的氫氧化鈉作為絮凝添加劑,藉以有效回收海水微藻。
    本研究發現,於海水系統中,調控pH值在約9.5至10.5間可有效絮凝微藻的主因,是由於難溶性氫氧化鎂的析出所致,此結果不同於以往微藻細胞表面因電性中和,細胞彼此間的靜電斥力降低所造成的絮凝現象。依據氫氧化鎂的析出量不同,沉降模式可分成Gradient mode (GM)、Interface mode (IM) 及Transition mode (TM) 三種。實驗中以影像分析方式建立微藻濃度與亮度值間的線性關係,藉以非破壞性的評估局部微藻濃度變化,並比較不同模式間的沉降效率。而結果顯示,GM沉降可快速且有效的絮凝微藻,所添加的氫氧化鈉量也較少於另外兩種模式。此外,以鹼處理方式去除多數水分後,可以添加酸性溶液 (HCl(aq)、H2SO4(aq)等) 的方式,溶解氫氧化鎂回復至絮凝前的狀態,再以高速離心等方式去除殘餘水分及離子,將氫氧化鎂與微藻細胞分離。

    Recently, global warming has become a serious environmental concern. Microalgae have good photosynthetic capabilities for CO2 fixation. Now, they have been produced for many applications, such as production of natural pigments or polyunsaturated fatty acids (PUFAs), which are high value products. Due to their small size and low cell density, recovery of microalgae is a major challenge. Therefore, we use NaOH, which is low price, as a additive to harvest marine microalgae efficiently.
    In this study, we find that controlling pH at 9.5 ~ 10.3 is effective in harvesting of marine microalgae, and the flocculation phenomenon involves the formation of Mg(OH)2. This result is different from the flocculation caused by reducing electrostatic repulsion forces between cells. In general, flocculation results from the electro-neutralization between electrolytic flocculant and surface charge of the cells. While the electrostatic repulsion forces decrease, the aggregation of suspended cells (usually, negative-charged cells repel each other) take place.
    According to quantities of Mg(OH)2, the settling phenomena can be classified into three modes, gradient, interface and transition mode (GM, IM and TM). In this research, in order to compare the efficiency between different modes, we use image analysis to establish the linear correlation between biomass concentration and luminance and evaluate the variations of local biomass concentration. The results show that GM can harvest microalgae efficiently and be faster than the other modes, the usage of NaOH is less. In addition, after removing the most water by base processes, Mg(OH)2 can be dissolved by supplying some acids, such as HCl. Then, we can obtain purer microalgae by high-speed batch centrifugation to remove the residues and ions.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XII 符號 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 5 2-1 微藻簡介 5 2-1-1 微藻簡介及相關應用 5 2-1-2 微藻培養系統簡介 7 2-2 分離方式簡介 11 2-2-1 物理性分離程序 11 2-2-2 化學性分離程序 18 2-3 影像分析技術簡介 22 第三章 研究材料與方法 24 3-1 培養系統 24 3-1-1 藻種來源 24 3-1-2 培養條件與方法及種源保存 25 3-1-3 微藻濃度分析 30 3-1-3-1 藻體乾重測定 30 3-1-3-2 分光光度計測定 31 3-2 分離系統 33 3-2-1 絮凝現象成因分析 33 3-2-1-1 添加劑與絮凝成分關係分析 33 3-2-1-2 絮凝成分製備及X射線繞射儀成分分析 35 3-2-2 沉降系統效率評估 37 3-2-2-1 Gradient mode (GM) 相對沉降速度評估 37 3-2-2-2 Interface mode (IM) 相對沉降速度評估 40 3-2-2-3 回收率評估 41 3-3 影像分析方法 42 3-3-1色彩模型簡介及轉換 42 3-3-1-1 RGB色彩模型 42 3-3-1-2 HSL色彩模型 42 3-3-1-3 色彩模型間的轉換:RGB和HSL 43 3-3-2影像擷取及數據處理 45 3-4實驗設備與儀器 47 第四章 實驗結果與討論 49 4-1微藻絮凝分離現象討論 49 4-1-1絮凝現象成因分析 49 4-1-2 X射線繞射儀成分分析 55 4-2 沉降速度評估 58 4-2-1 絮凝劑量與G TI (Gradient, Transition and Interface) 現象關係 58 4-2-2 Gradient mode (GM) 相對沉降速度評估 61 4-2-2-1 微藻濃度與HSL模型亮度值之關係 61 4-2-2-2 相對沉降速度 63 4-2-3 Interface mode相對沉降速度評估 66 4-2-4 GM & IM相對沉降速度評估總結 70 4-3 回收率評估 72 4-4 簡易成本評估 75 第五章 結論與未來展望 77 5-1 結論 77 5-2 未來展望 80 參考文獻 82 個人簡歷 88 圖目錄 圖 2-1 (a) 開放式跑道型培養池 (b) 密閉式管型光反應器 10 圖 2-2 Tubular bowl centrifuge (a) 設備示意圖 (b) 設備外觀圖 12 圖 2-3 Scroll type decanting centrifuge (a) 設備示意圖 (b) 設備外觀圖 12 圖 2-4 Rotary vacuum filter (a) 設備示意圖 (b) 設備外觀圖 14 圖 2-5 過濾技術所適用的粒子大小範圍 15 圖 2-6 垂直式及掃流式過濾示意圖 17 圖 2-7 垂直式及掃流式濾速與時間關係圖 17 圖 2-8 帶電微粒之位能曲線圖 18 圖 2-9 光反應器俯視灰階處理圖 23 圖 3-1 小球藻 (Chlorella sp.) 於光學顯微鏡下的圖像 (放大400倍) 24 圖 3-2 以血清瓶進行微藻接種培養示意圖 28 圖 3-3 保存用之藻珠製備流程 29 圖 3-4 藻體乾重測定實驗流程圖 30 圖 3-5 微藻吸光值與藻體乾重之檢量線 32 圖 3-6 微藻特徵波長掃瞄圖 32 圖 3-7 絮凝成因分析之實驗架設圖 34 圖 3-8 絮凝成分 (人工海水經鹼處理後的析出鹽類) 製備流程 35 圖 3-9 GM沉降實驗架設示意圖 39 圖 3-10 RGB色彩模型之三維座標示意圖 44 圖 3-11 HSL色彩模型示意圖 44 圖 3-12 影像分析程式操作示意圖 46 圖 4-1 微藻絮凝前後差異 49 圖 4-2 去離子水及微藻溶液之氫氧化鈉溶液量-pH值變化 52 圖 4-3 不含營養鹽的微藻溶液及不含微藻的培養基溶液之氫氧化鈉溶液量-pH值變化 52 圖 4-4 人工海水及氯化鈉溶液之氫氧化鈉溶液量-pH值變化 53 圖 4-5 硫酸鎂溶液之氫氧化鈉溶液量-pH值變化 53 圖 4-6 絮凝現象之推測示意圖 54 圖 4-7 XRD分析圖譜 (a) Sample 1 (b) Sample 2 (c) MgSO4 + NaOH (d) 試藥級Mg(OH)2 57 圖 4-8 GTI三現象之示意圖 60 圖 4-9 GTI三現象與鹼量範圍關係 60 圖 4-10 不同吸光值在RGB三維座標中的分佈情形 62 圖 4-11 吸光值-亮度之線性關係 62 圖 4-12 微藻濃度0.5 g/L,不同鹼量之時間-亮度變化圖 64 圖 4-13 微藻濃度0.75 g/L,不同鹼量之時間-亮度變化圖 64 圖 4-14 微藻濃度1.0 g/L,不同鹼量之時間-亮度變化圖 65 圖 4-15 微藻濃度0.5 g/L (a) 時間-高度變化圖 (b) 時間-濃度變化圖 67 圖 4-16 微藻濃度0.75 g/L (a) 時間-高度變化圖 (b) 時間-濃度變化圖 68 圖 4-17 微藻濃度1.0 g/L (a) 時間-高度變化圖 (b) 時間-濃度變化圖 69 圖 4-18 微藻濃度0.5 g/L,鹼液使用量-完成時間之關係 70 圖 4-19 微藻濃度0.75 g/L,鹼液使用量-完成時間之關係 71 圖 4-20 微藻濃度1.0 g/L,鹼液使用量-完成時間之關係 71 圖 4-21 沉降前後背景亮度差異 73 圖 4-22 吸光值-亮度檢量線之校正 73 圖 5-1 兩階段分離處理示意圖 79 圖 5-2 培養及分離系統整合示意圖 81 表目錄 表 2-1 微藻產品的相關應用 (Becker,1994) 6 表 3-1 Walne’s medium-nutrient solution組成 27 表 3-2 Walne’s medium-trace metal solution (TMS) 組成 27 表 3-3 Walne’s medium-vitamin solution組成 27 表 3-4 培養系統實驗儀器設備表 47 表 3-5分離系統實驗儀器設備表 48 表 4-1 回收率評估表 74 表 4-2 2009年固態氫氧化鈉及氫氧化鈉水溶液進口資料 76

    Aikaterini Papazi & Pavlos Makridis & Pascal Divanach (2009) “Harvesting Chlorella minutissima using cell coagulants” Journal of Applied Phycology 22: 349-355.
    Andrew K. Lee & David M. Lewis & Peter J. Ashman (2009) “Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel” Journal of Applied Phycology 21: 559-567.
    Anh V. Nguyen & Peter George & Graeme J. Jameson (2006) “Demonstration of a minimumin the recovery of nanoparticles by flotation: Theory and experiment” Chemical Engineering Science 61: 2494 – 2509.
    Becker E. W. (1994) Microalgae: Biotechnology and Microbiology Cambridge UniversityPress, UK, 1.
    Benamotz A. & Tornabene T. G. & Thomas W. H. (1985) “Chemical profile of selected species of microalgae with emphasis on lipids” Journal of Phycology 21(1): 72-81.
    Borowitzka M. A. (1999) “Commercial production of microalgae: ponds, tanks, tubes and fermenters” Journal of Biotechnology 70: 313-321.
    Chia-Hung Su & Chun-Chong Fu & Yet-Chung Chang & Giridhar R. Nair & Jun-Liang Ye & I.-Ming Chu & Wen-Teng Wu (2008) “Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis” Biotechnology and Bioengineering 99: 1034-1039.
    Christine Lamenha Luna & Carlos Edison Lopes & Giulio Massarani (2005) “Recovery of bacillus sphaericus spores by flocculation/sedimentation and flotation” Brazilian Archives of Biology and Technology 48: 61-70.
    Claus Fleischer & Stefan Becker & Gerhart Eigenberger (1996) “Detailed Modeling of the chemisorptions of CO2 into NaOH in a bubble column” Chemical Engineering Science 51: 1715-1724.
    Contreras E. M. & Giannuzzi L. & Zaritzky N. E. (2004) “Use of image analysis in the study of competition between filamentous and non-filamentous bacteria” Water Res 38: 2621-2630.
    C. U. Ugwu & H. Aoyagi & H. Uchiyama (2008) “Photobioreactors for mass cultivation of algae” Bioresource Technology 99: 4021–4028.
    Dorge T. & Carstensen J. M. & Frisvad J. C. (2000) “Direct identification of pure Penicillium species using image analysis” J Microbiol Methods 41: 121-133.
    Dries Vandamme & Imogen Foubert & Boudewijn Meesschaert & Koenraad Muylaert (2009) “Flocculation of microalgae using cationic starch” Journal of Applied Phycology.
    E. Molina Grima & E.-H. Belarbi & F. G. Acie´n Ferna´ndez & A. Robles Medina & Yusuf Chisti (2003) “Recovery of microalgal biomass and metabolites: process options and economics” Biotechnology Advances 20: 491–515.
    Grima E. M. & Belarbi E. H. & Fernandez F. G. A. et al. (2003) “Recovery of microalgal biomass and metabolites: process options and economics” Biotechnology Advances 20(7-8): 491-515.
    Hee-Mock Oh & Seog June Lee & Myung-Hwan Park & Hee-Sik Kim et al. (2001) “Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49” Biotechnology Letters 23: 1229–1234.
    H. Yahi & S. Elmaleh & J. Coma (1994) “Algal flocculation-sedimentation by pH increase in a continuous reactor” Wat. Sci. Tech 30: 259-267.
    Hyun-Hyo Suh & Gi-Seok Kwon & Chang-Ho Lee & Hee-Sik Kim & Hee-Mock Oh & Byung-Dae Yoon (1997) “Characterization of bioflocculant produced by Bacillus sp. DP-152” Journal of Fermentation and Bioengineering 84: 108-112.
    Jun-Ichi Horiuchi & Ichigaku Ohba & Kiyoshi Tada & Masayoshi Kobayashi & Tohru Kanno & Michimasa Kishimoto (2003) “Effective cell harvesting of halotolerant microalga Dunaliella tertiolecta with pH control” Journal of Bioscience and Bioengineering 95: 412-415.
    Martiña Ferreira & Ana Maseda & Jaime Fábregas & Ana Otero (2008) “Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone T-ISO” Aquaculture 279: 126–130.
    Masojidek J. & Koblizek M. & Torzillo G. (2004) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Photosynthesis in Microalgae. Pichmond Amos, Blackwell Science, UK, 20-23.
    Michael K. Danquah & Li Ang & Nyomi Uduman & Navid Moheimani & Gareth M. Forde (2009) “Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration” J Chem Technol Biotechnol 84: 1078-1083.
    Miyanaga K. & Seki M. & Furusaki S. (2000a) “Analysis of pigment accumulation heterogeneity in plant cell population by image-processing system” Biotechnol Bioeng 67: 493-497.
    Miyanaga K. & Seki M. & Furusaki S. (2000b) “Analysis of pigmentation in individual cultured plant cells using an image processing system” Biotechnol Lett 22: 977-981.
    Miyanaga K. & Seki M. & Furusaki S. (2000c) “Quantitative determination of cultured strawberry-cell heterogeneity by image analysis: effects of medium modification on anthocyanin accumulation” Biochem Eng J 5: 201-207.
    N. Rossignol & L. Vandanjon & P. Jaouen & F. Que´me´neur (1999) “Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration” Aquacultural Engineering 20: 191–208.
    P. De Schryver & R. Crab & T. Defoirdt & N. Boon & W. Verstraete (2008) “The basics of bio-flocs technology: The added value for aquaculture” Aquaculture 277: 125–137.
    P. G. Silva & H. J. Silva (2007) “Effect of mineral nutrients on cell growth and self-flocculation of Tolypothrix tenuis for the production of a biofertilizer” Bioresource Technology 98: 607–611.
    Pons M. N. & Druin J. F. & Louvel L. & Vanhoutte B. & Viver H. & Germain P. (1998) “Physiological investigations by image analysis” J Biotechnol 65: 3-14.
    Pulz O. (2001) “Photobioreactors: production systems for phototrophic microorganisms” Applied Microbiology and Biotechnology 57(3): 287-293.
    Reitan K. I. & Rainuzzo J. R. & Olsen Y. (1994) “Effect of nutrient limitation on fatty acid and lipid content of marine microalgae” Journal of Phycology 30(6): 972-979.
    Renaud S. M. & Parry D. L. (1994) “Microalgae for use in tropical aquaculture.2. effect of salinity on growth, gross chemical composition and fatty acid composition of 3 species of marine microalgae” Journal of Applied Phycology 6(3): 347-356.
    Renaud S. M. & Parry D. L. & Thinh L. V. et al. (1991) “Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture” Journal of Applied Phycology 3(1): 43-53.
    Richard M. Knuckey & Malcolm R. Brown & Rene´ Robert & Dion M. F. Frampton (2006) “Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds” Aquacultural Engineering 35: 300–313.
    Ryouetsu Hase & Hiroyoshi Oikawa & Chiyo Sasao & Masahiko Morita & Yoshitomo Watanabe (2000) “Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city” Journal of Bioscience and Bioengineering 89: 157-163.
    Sang-Kyu Jung & Sun Bok Lee (2003) “Image analysis of light distribution in a photobioreactor” Biotechnology and Engineering 84: 394-397.
    Shubo Deng & Gang Yu & Yen Peng Ting (2005) “Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal” Colloids and Surfaces B: Biointerfaces 44: 179–186.
    Suen Y. & Hubbard J. S. & Holzer G. et al. (1987) “Total lipid production of the green alga Nannochloropsis sp. qii under different nitrogen regimes” Journal of Phycology 23(2): 289-296.
    Watanabe Y. & Saiki H. (1997) “Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas” Energy Conversion and Management 38: S499-S503.
    Yam K. L. & Papadakis S.E. (2004) “A simple digital imaging method for measuring and analyzing color of food surfaces” J Food Eng 61: 137-142.
    Y. M. Chen & J.C. Liu & Yih-Hsu Ju (1998) “Flotation removal of algae from water” Colloids and Surfaces B: Biointerfaces 12: 49-55.
    Yuan-Kun Lee & Chin-Seng Low (1991) “Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture” Biotechnology and Bioengineering 38: 995-1000.
    莊清榮 & 游勝傑 (2008) 「流體中的最佳守門員-微過濾與超過濾」,科學發展 429期,14-19頁。
    賴耿陽 編譯 (1987) 「化工過濾理論實務」,復漢出版社出版,2-8頁。
    繆紹綱 編著 (2005) 「數位影像處理 活用-Matlab」,全華科技圖書股份有限公司出版,26-27頁。
    楊萬發 編著 (2002) 「水及廢水處理化學」,茂昌圖書有限公司。

    下載圖示 校內:2012-08-03公開
    校外:2012-08-03公開
    QR CODE