簡易檢索 / 詳目顯示

研究生: 張展豪
Chang, Chan-Hao
論文名稱: 應用建築資訊模型及擴增實境建構輔助機電工程施工之協同機制
Using BIM and Augmented Reality to Develop the Interoperable Mechanism to Assist MEP Construction
指導教授: 馮重偉
Feng, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 機電工程建築資訊模型雲端資料庫擴增實境
外文關鍵詞: MEP construction (Mechanical, Electrical, and Plumbing), BIM (Building Information Modeling), Cloud database, AR (Augmented Reality)
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在建築/工程/營造 (Architecture, Engineering and Construction, AEC) 產業中,機電工程(Mechanical, Electrical and Plumbing, MEP)有工項多、介面複雜、佈設地點廣闊的特性,2D施工圖說無法有效彙整龐大的工程資訊,更無法清楚表達3D空間概念,以至於現場作業人員易判讀錯誤,進而提高施工錯誤率。傳統解決方法常依靠師傅自身經驗於現地即時進行管路徑及高程的修改,而這些設計變更資訊亦無系統化地保存與傳遞,導致最終BIM模型之資訊不正確,失去其應用價值。是故,機電工程施工作業的資訊量龐雜且更新速度快,如何即時且有效的保存與傳遞數據將會是重點研究議題。
    已有許多研究指出藉由建築資訊模型(Building Information Modeling , BIM)作為全專案生命週期的資訊載體有助於彙整專案資訊與提升3D空間概念,但BIM在工程現地即時應用的能力不足,難以反應模型與現地的差異。近年來,擴增實境(Augmented Reality, AR)的應用發展快速,若將BIM與AR結合雲端資料庫應用於AEC產業,可提升模型與環境的互動性及資訊即時應用之能力,改善傳統作業上的困難處,增加BIM的應用價值與施工作業流程的效率。
    為解決上述問題,本研究首先以專家訪談與IDEF0方法解析機電工程施工作業流程所需之資訊需求與操作需求,並且制定符合機電工程施工作業要求之BIM轉換至AR與雲端資料庫連結架構,提升BIM與AR之協同性。接著將開發一套結合BIM與AR輔助機電工程施工作業之協同架構應用程式,藉由開發模型定位方法使虛擬模型與真實環境整合,配合輔助功能開發與雲端資料庫的連結,並提升BIM模型於現地即時應用的能力。綜上所述,本研究所開發之AR協同機制能夠有效提升機電工程施工作業流程的效率與專案資訊正確性,並藉由制定符合機電工程施工作業要求之BIM轉換至AR與雲端資料庫連結架構,提升BIM與AR之協同性。

    Among the AEC industry (Architecture, Engineering and Construction), the MEP(Mechanical, Electrical, and Plumbing) construction had the characteristic of multi-work items, complex interfaces, and wide installation area. 2-dimensional construction drawings were not able to integrate such huge amount of constructing data. Besides, they couldn’t express the 3-dimensional concept clear enough, which often led to misunderstanding for the site employees and increased error rate. The traditional way to modify the heights and path of the pipe often relied on site workers’ own experience. Thus, these design changes were not able to preserve and transfer systematically. Eventually caused BIM (Building Information Modeling)’s errors, losing its applicational value. Therefore, due to the large amount and fast-updated information of MEP construction, how to effectively and instantly preserving and transferring data would be the big issue for research.
    Lots of research had pointed out that by using BIM as the projects’ life-cycle-carrier would be helpful for consolidating projects’ information and improving 3-D space concepts. However, the ability of instantly extracting information on site remains poor and hard to react to the differences between BIM and construction site. Benefited from the applications of intellectual technology that had been developing rapidly in the recent years. If we applied the combination of BIM and AR(Augmented Reality) with cloud database in the AEC industry, we would be able to improve the interactivity and instant information application ability. Improving the difficulties of traditional working, the value of BIM application, and the working efficiency of construction.
    To solve the problem above, this research first focused on the experts’ interview and the analysis of informational and operational needs in the MEP construction workflow by using IDEF0 method. And established the architecture of the connection of BIM converting to AR and cloud database that fulfill the requirements of MEP construction operations, improving the cooperation of BIM and AR. Then we would develop a collaborative framework application program that combined BIM and AR to assist MEP construction operations. By developing a model positioning method, it was able to integrate the virtual model with the real environment and cooperate with the auxiliary function that developed the cloud database connection, which eventually improved the instant application ability of BIM models.
    In conclusion, the AR cooperating system that had been developed in this research could effectively improve the efficiency of MEP construction workflow and accuracy of the project information. And enhanced the cooperation of BIM and AR by establishing the architecture of BIM converting to AR and cloud database connection that met the requirements of MEP construction operations.

    摘要 I Abstract II 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍 4 1.4 研究流程 4 1.5 論文架構 7 第二章 問題陳述與文獻回顧 8 2.1 研究問題陳述 8 2.1.1 機電工程施工作業流程複雜且資訊量龐大 8 2.1.2 BIM模型建置與資訊的導出不符合施工作業需求 9 2.1.3 BIM模型於現地即時應用能力不足 9 2.2 機電工程施工作業流程之困難 11 2.3 建築資訊模型於機電工程應用之發展現況 14 2.4 擴增實境技術於工程應用之發展現況 19 2.5 小結 29 第三章 研究方法 31 3.1 需求分析工具 32 3.1.1 專家訪談 32 3.1.2 IDEF0 33 3.2 BIM建模工具 35 3.2.1 Autodesk Revit 35 3.2.2 Autodesk Dynamo 36 3.2.3 Autodesk 3DsMax 37 3.3 擴增實境開發工具 38 3.3.1 Apple iPad pro 38 3.3.2 Unity Game Engine 40 3.3.3 AR Foundation 41 3.3.4 Microsoft Visual Studio 42 3.3.5 Apple Xcode 43 3.4 雲端資料庫架設工具 44 3.4.1 Firebase 44 3.4.2 Google Drive 45 第四章 開發AR模式架構及流程 46 4.1 研究架構 46 4.2 解析機電工程施工作業資訊與操作需求 48 4.2.1 解析機電工程施工作業與資訊需求 48 4.2.2 解析AR應用程式所需資訊與操作需求 50 4.3 符合作業需求之BIM模型及雲端即時資料庫架構 52 4.3.1 符合作業需求之BIM模型 52 4.3.2 建構雲端即時資料庫 55 4.4 開發擴增實境專案 56 4.4.1 分析機電工程施工作業情境 57 4.4.2 建立AR應用程式架構 59 4.4.3 開發輔助機電工程施工作業之BIM與AR協同應用程式 63 4.5 建立BIM與AR結合雲端資料庫協同作業架構 72 4.6 小結 74 第五章 案例驗證 76 5.1 案例介紹 76 5.2 解析作業流程需求 78 5.3 符合作業需求之案例驗證BIM模型 80 5.4 建置案例驗證雲端資料庫 80 5.5 開發AR專案與應用程式封裝 81 5.6 BIM與AR結合雲端資料庫協同作業操作流程模擬 83 5.7 小結 93 第六章 結論與建議 97 6.1 結論 97 6.2 未來研究之建議 98 參考文獻 100 附錄 訪談記錄 104

    英文文獻
    [1] Ryan Jang, William Collinge (2020). “Improving BIM asset and facilities management processes: A Mechanical and Electrical (M&E) contractor perspective”. Journal of Building Engineering, Volume 32, November 2020, 101540.
    [2] Michael Chu, Jane Matthews, Peter E.D.Love (2018). “Integrating mobile Building Information Modelling and Augmented Reality systems: An experimental study”. Automation in Construction. Volume 85, January 2018, Pages 305-316.
    [3] Sepehr Alizadehsalehi, Ahmad Hadavi, Joseph Chuenhuei Huang (2020). “From BIM to extended reality in AEC industry”. Automation in Construction, Volume 116, August 2020, 103254.
    [4] Augmented reality system for facility management using image-based indoor localization ,Francis Baeka, Inhae Hab, Hyoungkwan Kimb,Automation in Construction 99 (2019) 18–26
    [5] Component based engineering of a mobile BIM-based augmented reality system , Sebastjan Meža, Žiga Turk, Matevž Dolenc,Automation in Construction 42 (2014) 1–12
    [6] Khaled El Ammari, Amin Hammad, Remote interactive collaboration in facilities management using BIM-based mixed reality(2019)
    [7] Kinam Kim, Hongjo Kim, Hyoungkwan Kim,Image-based construction hazard avoidance system using augmented reality in wearable device(2017)390-403
    [8] Ying Zhou,Hanbin Luo,Yiheng Yang,Implementation of augmented reality for segment displacement inspection during tunneling construction(2017)112-121
    [9] Kwon, O. S., Park, C. S., &Lim, C. R. (2014). A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality. Automation in Construction.
    [10] Behzadan, A. H., Dong, S., &Kamat, V. R. (2015). Augmented reality visualization: A review of civil infrastructure system applications. Advanced Engineering Informatics.
    [11] Koch, C., Neges, M., König, M., &Abramovici, M. (2014). Natural markers for augmented reality-based indoor navigation and facility maintenance. Automation in Construction.
    [12] Azuma, R. T. (1997). A survey of augmented reality. In Presence: Teleoperators and Virtual Environments.
    [13] Eastman, C. (2011). A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors. In John Wiley & Sons, Inc.
    [14] Jun Wanga, Xiangyu Wangab,Wenchi Shoua,Heap-Yih Chongc, Jun Guod(2016).”Building information modeling-based integration of MEP layout designs and constructability.” Automation in Construction Volume 61, January 2016, Pages 134-146.
    [15] Zhen-Zhong Hu, Jian-Ping Zhang, Fang-Qiang Yu, Pei-Long Tian, Xue-Song Xiang(2016). “Construction and facility management of large MEP projects using a multi-Scale building information model.” Advances in Engineering Software Volume 100, October 2016, Pages 215-230.
    [16] Antoine J.P.Tixier, Matthew R. Hallowell, Balaji Rajagopalan, Dean Bowman, ” Automated content analysis for construction safety: A natural language processing system to extract precursors and outcomes from unstructured injury reports”, Automation in Construction, Volume 62, Pages 45-56, 2016.
    [17] Bazarov S. E., Kholodilin I. Y., Nesterov A. S., Sokhina, A. V., ”Applying Augmented Reality in practical classes for engineering students”, IOP Conf. Series: Earth and Environmental Science Vol. 87. No. 3, 2017.
    [18] Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652-660, 2017.
    [19] Dongsik Jo, Gerard Jounghyun Kim, “ARIoT: scalable augmented reality framework for interacting with Internet of Things appliances everywhere”, IEEE, Volume 62, pp. 334-340, 2016.
    [20] FIPS F. “Integration definition for function modelling (IDEF0).” Federal information processing standards publication. 1993.
    [21] Francis Baek, Inhae Ha, Hyoungkwan Kim, ”Augmented reality system for facility management using image-based indoor localization”, Automation in Construction, Volume 99, Pages 18-26, 2019.
    [22] Günther Riexinger, Andreas Kluth, Manuel Olbrich, Jan-Derrik Braun, Thomas Bauernhansl, “Mixed Reality for On-Site Self-Instruction and Self-Inspection with Building Information Models”, Procedia CIRP, Volume 72, Pages 1124-1129, 2018.
    [23] Jaehyun Park, Hubo Cai, “WBS-based dynamic multi-dimensional BIM database for total construction as-built documentation”, Automation in Construction, Volume 77, Pages 15-23, 2017.
    [24] Jad Chalhoub, Steven K. Ayer, “Using Mixed Reality for electrical construction design communication”, Automation in Construction, Volume 86, Pages 1-10, 2018.
    [25] Kinam Kim, Hongjo Kim, Hyoungkwan Kim, “Image-based construction hazard avoidance system using augmented reality in wearable device”, Automation in Construction, Volume 83, Pages 390-403, 2017.
    [26] Khaled El Ammari, Amin Hammad, “Remote interactive collaboration in facilities management using BIM-based mixed reality”, Automation in Construction, Volume 107, 102940, 2019.
    [27] Michael Chu, Jane Matthews, Peter E.D.Love, “Integrating mobile Building Information Modelling and Augmented Reality systems: An experimental study”, Automation in Construction, Volume 85, Pages 305-316, 2018.
    [28] Oh-Seong Kwon, Chan-Sik Park, Chung-Rok Lim., “A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality.”, Automation in construction, Volume 46, Pages 74-81, 2014.
    [29] Sebastjan Meža, Žiga Turk, Matevž Dolenc, ”Component based engineering of a mobile BIM-based augmented reality system”, Automation in Construction, Volume 42, Pages 1-12, 2014.
    [30] Songfei Wu, Qiyu Shen, Yichuan Deng, Jack Cheng, “Natural-language-based intelligent retrieval engine for BIM object database”, Computers in Industry, Volume 108, Pages 73-88, 2019.
    [31] Sepehr Alizadehsalehi, Ahmad Hadavi, Joseph Chuenhuei Huang, ”From BIM to extended reality in AEC industry”, Automation in construction, Volume 116, 103254, 2020.
    [32] XiaoLi, WenYi, Hung-LinChi, Xiangyu Wang, Albert P.C.Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety”, Automation in Construction, Volume 86, Pages 150-162, 2018.
    [33] Yu-Cheng Lin, Jun-Xiong Chang, Yu-Chih Su, ”Developing construction defect management system using BIM technology in quality inspection”, Journal of Civil Engineering and Management, Volume 22, Pages 903-914, 2016.
    [34] Ying Zhou, Hanbin Luo, Yiheng Yang, “Implementation of augmented reality for segment displacement inspection during tunneling construction”, Automation in Construction, Volume 82, Pages 112-121, 2017.

    中文文獻
    [1] 陳俊瑋, “開發以混合實境為基礎之現地施工進度追蹤及查核系統”, 碩士論文, 國立成功大學土木工程學研究所, 台南市, 2019.
    [2] 梁高逢, “應用擴增實境及建築資訊模型輔助機電設備施作及查核作業”, 第22屆營建工程與管理學術研討會. 2018:54.
    [3] 黃士豪, “應用擴增實境及建築資訊模型於維護作業之空間分析-以機電設備為例”, 碩士論文, 國立成功大學土木工程學研究所, 台南市, 2018.
    [4] 蔡文龍, 歐志信, 張傑瑞, 何叡, Visual C# 2017基礎必修課, 碁峰資訊, 臺北市, 2017.
    [5] 郭斯傑, 陳曉晴, 詹慕祖 (2004). “建築工程中機電設備施工排序之探討”, 中華民國建築學會, 建築學報45期 (2004/02) , P121–141.
    [6] 林彥瀚 (2019). “應用擴增實境與無線定位技術建構消防安全設備檢測系統之研究”, 碩士論文, 國立高雄大學建築學系研究所, 高雄市, 2019.
    [7] 李冠文 (2009). "建構符合機電包商施工需求之3D繪圖元件模型之研究”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2009.
    [8] 林羿均, 鄭育閔, 吳翌禎 (2012) “BIM-based整合設計流程分析與探討”, 第16屆營建工程與管理學術研討會, 2012.
    [9] 王柏仁 (2016). “結合知識本體與BIM於機電設施維護之應用-以大型設備更換為例”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2016.
    [10] 蘇美茹(2017).”運用BIM技術進行機電設計與整合探討-以捷運新建案為例”, 碩士論文, 國立臺灣大學土木工程學系研究所, 2017.
    [11] 楊智傑, 謝啟萬(2020).”BIM導入管線工設施維護管理建立-以職務宿舍設施為例”,第18屆大地工程學術研究討論會. 2020.
    [12] 楊勝智 (2020). "結合擴增實境及雲端資料庫應用於工地物料管理作業”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2020.
    [13] 莊大軍 (2020). "開發以混合實境為基礎之工程作業系統”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2020.

    無法下載圖示 校內:2026-08-26公開
    校外:2026-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE