簡易檢索 / 詳目顯示

研究生: 鄭宇翔
Zheng, Yu-Xiang
論文名稱: 光柵式結構光源三維掃描儀原型機開發
Development of Three-Dimensional Raster Scanner Prototype with Structured Lighting
指導教授: 方晶晶
Fang, Jing-Jing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 立體視覺光柵式結構光格雷碼三維掃描儀
外文關鍵詞: stereovision, optical grating structure, Gray code, optical scanner
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光柵式結構光源三維掃描儀的建立涵蓋了立體光學理論、相機校正理論、結構光編碼理論、對位座標理論及整合所有軟硬體所需程式撰寫技巧,是一項充滿挑戰的儀器。本研究目的在於開發一掃描範圍為一般牙模掃描儀兩倍大小之光柵式結構光源三維掃描儀,並在此過程中揭露完成此裝置所需用到的各種理論與實際應用時發生的問題與克服的方法。
    本研究以雙相機的立體視覺系統做為開端,並以蔡氏校正取得兩台相機的內、外參數,校正的過程包針孔相機模型的參數推導與極線幾何方法的運用。取得相機的校正檔後,結合投影機投射光柵式結構光格雷碼影像與相位移影像,將掃描範圍由一點擴增至投影機投射範圍,並且投射兩張影像篩選出不適合做為編碼點的座標值。此外,為取得完整受測物雲點,本研究使用TrICP演算法對多次掃描產生之雲點進行座標對位,並且為了加速對位的過程發展出對位雲點校正塊,儲存各掃描角度對位時所需的轉換矩陣。最後,透過校正板、平板、鉻鋼珠與對位雲點校正塊的測試,本研究的校正精度為0.026±0.02mm、單次掃描精度0.158±0.033mm、多次掃描精度0.225±0.150mm的結果。

    Three-dimensional raster scanner is a challenging instrument. To complete this machine needs many theories, such as stereovision, camera calibration, structured light techniques, positioning registration and skill of software development. Purpose of this study is to develop a three-dimensional raster scanner, which has double scanning range compared to normal dental scanner. This study employs stereo visualization theory with dual cameras, in order to obtain two camera's parameters by Tsai's calibration method. After camera calibration, we use a projector to provide the light source with a computer generated structure gray image. According to the position of the projector, range of scanning domain were amplified. And then, we increase the number of projection image to avoid deviation points. In order to gain entire cloud points for further analysis, we used TrICP algorithm to register the coordinate of point cloud from several scan positions. We also use a calibrated block to accelerate the speed of registration processes by saving each transition matrix for every positions. Finally, tests of a few simple cases reveal that the calibration accuracy is 0.026 ± 0.02mm, the single-scan accuracy is 0.158 ± 0.033mm, and the multiple scans accuracy is 0.225 ± 0.150mm.

    摘要 I Extend Abstract II 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XIV 第1章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機與目的 2 1.4 本文架構 4 第2章 文獻回顧 5 2.1 立體視覺理論 5 2.2 相機校正理論 6 2.3 三維掃描器發展現況 7 2.4 結構光編碼理論 9 2.5 座標對位理論 11 第3章 系統架構 14 3.1 系統流程 14 3.2 硬體架構 16 3.2.1 數位攝相機 17 3.2.2 數位投影機 19 3.2.3 電控旋轉台 20 3.2.4 相機校正板 21 3.2.5 對位用校正塊 24 3.2.6 軟體架構 25 第4章 立體視覺系統 27 4.1 蔡氏校正 27 4.1.1 相機模型與相機參數 28 4.1.2 相機校正 33 4.2 極線幾何 41 4.2.1 極線幾何 42 4.2.2 影像扭正 43 4.3 雙攝影機逆運算 47 4.4 逆運算點精度驗證 48 4.4.1 NSCE評估 48 4.4.2 逆運算誤差 49 第5章 光柵式結構光編碼與掃描雲點對位 51 5.1 格雷碼結構光編碼 53 5.2 編碼點計算 56 5.2.1 可編碼點 56 5.2.2 不可編碼處 59 5.3 相位移增點法 63 5.4 掃描雲點對位 65 5.4.1 TrICP演算法 67 5.4.2 點群八元樹加速TrICP演算法 73 5.5 對位雲點校正塊 76 5.6 後處理 77 5.6.1 取樣 77 5.6.2 濾點 78 第6章 結果與精度驗證 81 6.1 掃描精度驗證 81 6.1.1 單次掃描的誤差評估 81 6.1.2 多次掃描的誤差評估 85 6.2 牙模掃描成果 90 第7章 結論與未來展望 95 7.1 結論 95 7.2 討論 97 7.3 未來展望 98 參考文獻 101

    [1] 黃世昕, "發展可攜式之光學定位雷射掃描," 國立成功大學機械工程研究所碩士論文, 2009.
    [2] Fang, J.-J. and Kuo, T.-H., "Modelling of mandibular movement," Computers in Biology and Medicine, Vol.38, No.11–12, pp.1152-1162, November, 2008.
    [3] Wheatstone, C., "Contribution to the Physiology of Vision. - Part the First. On some remarkable, and hitherto unobserved, Phenomena of Binocular Vision," Philosophical Transactions of the Royal Society, Vol.128, pp.371-394, January 1, 1838.
    [4] Zhang, Z., "Determining the Epipolar Geometry and its Uncertainty: A Review," International Journal of Computer Vision, Vol.27, No.2, pp.161-195, 1998.
    [5] Papadimitriou, V. and Dennis, T. J., "Epipolar line estimation and rectification for stereo image pairs," IEEE Transactions on Image Processing, Vol.5, No.4, pp.672-676, 1996.
    [6] Martins, H. A., Birk, J. R., and Kelley, R. B., "Camera models based on data from two calibration planes," Computer Graphics and Image Processing, Vol.17, No.2, pp.173-180, February 4, 1981.
    [7] Gruen, A. and Huang, T. S., Calibration and orientation of cameras in computer vision, 3rd ed., Springer-Verlag Berlin Heidelberg: 2001.
    [8] Hartley, R. I. and Saxena, T., "The Cubic Rational Polynomial Camera Model," Proceeding of DARPA Image Understanding Workshop, pp.649-653, 2000.
    [9] K., R., S., K., and K., A., Computer Vision Three-Dimensional Data from Images, 1st ed., Springer-Verlag Singapore Pte. Ltd: Springer, 1998.
    [10] Tsai, R. Y., "A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses," IEEE Journal of Robotics and Automation, Vol.3, No.4, pp.323-344, August, 1987.
    [11] Lenz, R. K. and Tsai, R. Y., "Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.10, No.5, pp.713-720, September, 1988.
    [12] Ireland, A. J., McNamara, C., Clover, M. J., House, K., Wenger, N., Barbour, M. E., Alemzadeh, K., Zhang, L., and Sandy, J. R., "3D surface imaging in dentistry - what we are looking at," British Dental Journal, Vol.205, No.7, pp.387-392, Octorber 11, 2008.
    [13] Albitar, C., Graebling, P., and Doignon, C., "Robust Structured Light Coding for 3D Reconstruction," Proceeding of IEEE International Conference on Computer Vision, pp.1-6, 2007.
    [14] Rocchini, C., Cignoni, P., Montani, C., Pingi, P., and Scopigno, R., "A low cost 3D scanner based on structured light," Computer Graphics Forum, Vol.20, No.3, pp.299-308, September, 2001.
    [15] Fu, Y., Wang, Y., Wan, M., and Wang, W., "Three-dimensional profile measurement of the blade based on surface structured light," International Journal for Light and Electron Optics, Vol.124, No.18, pp.3225-3229, September, 2013.
    [16] Jarvis, R. A., "A Laser Time-of-Flight Range Scanner for Robotic Vision," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.5, No.5, pp.505-512, 1983.
    [17] Acosta, D., Garcia, O., and Aponte, J., "Laser Triangulation for Shape Acquisition in a 3D Scanner Plus Scan," Proceeding of Electronics, Robotics and Automotive Mechanics Conference, pp.14-19, 2006.
    [18] Nakai, H., Iwai, D., and Sato, K., "3D shape measurement using fixed camera and handheld laser scanner," Proceeding of SICE Annual Conference, pp.1536-1539, 2008.
    [19] Chen, C. H. and Kak, A. C., "Modeling and calibration of a structured light scanner for 3-D robot vision," Proceeding of IEEE International Conference on Robotics and Automation, pp.807-815, 1987.
    [20] Li, Z., Curless, B., Hertzmann, A., and Seitz, S. M., "Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multiview stereo," Proceeding of IEEE International Conference on Computer Vision, pp.618-625, 2003.
    [21] Tongbo, C., Seidel, H. P., and Lensch, H., "Modulated phase-shifting for 3D scanning," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
    [22] Chen, F., Brown, G. M., and Song, M., "Overview of three-dimensional shape measurement using optical methods," Optical Engineering, Vol.39, No.1, pp.10-22, January 01, 2000.
    [23] Basri, R., Jacobs, D., and Kemelmacher, I., "Photometric Stereo with General, Unknown Lighting," International Journal of Computer Vision, Vol.72, No.3, pp.239-257, May 01, 2007.
    [24] Batlle, J., Mouaddib, E., and Salvi, J., "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recognition, Vol.31, No.7, pp.963-982, July 31, 1998.
    [25] Posdamer, J. L. and Altschuler, M. D., "Surface measurement by space-encoded projected beam systems," Computer Graphics and Image Processing, Vol.18, No.1, pp.1-17, January, 1982.
    [26] Wu, H. B., Chen, Y., Wu, M. Y., Guan, C. R., and Yu, X. Y., "3D Measuremnet Technology by Structured Light Using Stripe-Edge-Based Gray Code," Proceeding of Internation Symposium on Instrumentation Science and Technology, 2006.
    [27] Scharstein, D. and Szelisk, R., "High-accuracy stereo depth maps using structured light," Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.195-202, 2003.
    [28] Durdl, N. G., Thayyoor, J., and Raso, V. J., "An improved structured light technique for surface reconstruction of the human trunk," Proceeding of IEEE Conference on Electrical and Computer Engineering, pp.874-877, 1998.
    [29] Gustafsson, M. G. L., "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of Microscopy, Vol.198, No.2, pp.82-87, 2000.
    [30] Benveniste, R. and Ünsalan, C., "Nary coded structured light-based range scanners using color invariants," Journal of Real-Time Image Processing, Vol.9, No.2, pp.359-377, June, 2014.
    [31] Ishii, I., Yamamoto, K., Doi, K., and Tsuji, T., "High-speed 3D image acquisition using coded structured light projection," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.925-930, 2007.
    [32] Chen, S. Y., Li, Y. F., and Zhang, J., "Realtime Structured Light Vision with the Principle of Unique Color Codes," Proceeding of IEEE International Conference on Robotics and Automation, pp.429-434, 2007.
    [33] Je, C., Lee, S., and Park, R.-H., High-Contrast Color-Stripe Pattern for Rapid Structured-Light Range Imaging, in Computer Vision - ECCV, Pajdla, T. and Matas, J., Editors. 2004. p. 95-107.
    [34] Fechteler, P. and Eisert, P., "Adaptive colour classification for structured light systems," Proceeding of IET Computer Vision, pp.49-59, 2009.
    [35] Xu, Y. and Aliaga, D. G., "Robust pixel classification for 3D modeling with structured light," Proceeding of Graphics Interface, pp.233-240, 2007.
    [36] Gupta, M., Agrawal, A., Veeraraghavan, A., and Narasimhan, S. G., "Structured light 3D scanning in the presence of global illumination," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.713-720, 2011.
    [37] Barone, S., Paoli, A., and Razionale, A., "Three-dimensional point cloud alignment detecting fiducial markers by structured light stereo imaging," Machine Vision and Applications, Vol.23, No.2, pp.217-229, March 1, 2012.
    [38] Besl, P. J. and McKay, N. D., "A Method for registration of 3-D shapes," PIEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.14, No.2, pp.239-256, Febuary, 1992.
    [39] Rusinkiewicz, S. and Levoy, M., "Efficient variants of the ICP algorithm," Proceeding of Third International Conference on 3-D Digital Imaging and Modeling, pp.145-152, 2001.
    [40] Chetverikov, D., Svirko, D., Stepanov, D., and Krsek, P., "The Trimmed Iterative Closest Point algorithm," Proceeding of International Conference on Pattern Recognition, pp.545-548, 2002.
    [41] Chetverikov, D., Stepanov, D., and Krsek, P., "Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm," Image and Vision Computing, Vol.23, No.3, pp.299-309, March 1, 2005.
    [42] "ADLINK Technology," 2013, <http://www.adlinktech.com/>, July 22 2013.
    [43] "3DReshaper," 2013, <http://www.3dreshaper.com/>, July 22 2013.
    [44] "Epipolar geometry," 2013, <http://en.wikipedia.org/wiki/Epipolar_geometry>, July 22 2013.
    [45] Weng, J., Cohen, P., and Herniou, M., "Camera calibration with distortion models and accuracy evaluation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.14, No.10, pp.965-980, Octorber, 1992.
    [46] "Sensable S3," 2013, <http://thinglab.com.au/downloads/s3.pdf>, July 15 2013.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE