| 研究生: |
李水勝 LI, Shui-Sheng |
|---|---|
| 論文名稱: |
具多樣基板與耦合長度之矽超導諧振器低溫特性探討 Investigation of Cryogenic Characteristics of Silicon Superconducting Resonators with Varying Substrates and Coupling Lengths |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 矽超導 、藍光雷射 、超導諧振器 、介電損耗正切值 、耦合長度 、品質因子 |
| 外文關鍵詞: | Silicon superconductivity, Blue Laser Crystallization, Superconducting Resonator, Loss Tangent, Coupling Length, Quality factor (Q) |
| 相關次數: | 點閱:13 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著量子運算與低功耗電子元件的快速發展,對於具備低能耗、高整合度與 CMOS 相容性之超導材料與元件之需求日益提升。矽作為目前半導體工業中最成熟且成本控制最具優勢的材料平台,若能展現超導特性,將有助於發展新一代高整合、低溫操作之量子與超導電子元件,並大幅提升其製程兼容性與應用潛力。
本研究聚焦於矽超導共振器( Silicon Superconducting Resonator)之製作與低溫特性分析,結合重摻雜硼(Boron)並經藍光雷射活化(Blue Laser Crystallization, BLC3W)實現矽超導性,進一步構築矽超導諧振器。為系統性探討結構對共振表現之影響,設計三種基板類型(高阻值矽、Poly on Oxide、Junction 結構)與三種耦合長度(137、217、337 μm),共製作五組樣品。
樣品經稀釋冷凍機(Dilution Refrigerator)進行毫開(mK)等級之頻率與相位量測後發現,僅高阻值矽基板樣品具明顯共振訊號。其中耦合長度為 337 μm 之結構表現最佳,頻率響應凹陷深、相位跳變幅度大,載入品質因子(QL)約為 2843.5。進一步針對該結構進行溫度與功率依賴性分析,觀察到共振凹陷隨操作溫度升高與輸入功率下降而逐漸減弱,顯示其具備溫度與功率靈敏性,驗證矽超導材料於微波共振應用中之可行性與潛力。
With the rapid advancement of quantum computing and low-power electronics, there is increasing demand for superconducting devices with low energy consumption, high integration, and CMOS compatibility. Silicon, being the most established platform in the semiconductor industry, offers significant advantages in cost and scalability. If superconductivity can be achieved in silicon, it may pave the way for next-generation quantum and cryogenic applications.
This study focuses on the fabrication and characterization of Silicon Superconducting microwave resonators. Superconductivity was induced in silicon through heavy boron doping and blue laser crystallization (BLC3W). Five Silicon Superconducting Resonator samples were designed using three substrate types—high-resistivity silicon, polycrystalline silicon on oxide, and junction-based silicon—along with three coupling lengths (137 μm, 217 μm, and 337 μm).
Cryogenic measurements were conducted using a dilution refrigerator down to millikelvin (mK) temperatures. Among all samples, only those fabricated on high-resistivity silicon exhibited clear resonance characteristics. In particular, the sample with a 337 μm coupling length showed the strongest response, featuring a pronounced frequency dip and distinct phase transition, with an extracted loaded quality factor (QL) of approximately 2843.5. Temperature- and power-dependent measurements further revealed the degradation of resonance depth under elevated temperature or reduced input power, indicating strong sensitivity to operating conditions.
1. Blog, T.P.a. Metamaterial Superconductor Hints At New Era Of High Temperature Superconductivity. 2014; Available from: https://medium.com/the-physics-arxiv-blog/metamaterial-superconductor-raises-critical-temperature-of-zero-resistance-3da6c4657baa.
2. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity. Physical Review, 1957. 108(5): p. 1175-1204.
3. Chiu, M., Investigation on Properties of Silicon Superconductor with Different Laser Annealing. 2024.
4. Bustarret, E., et al., Superconductivity in doped cubic silicon. Nature, 2006. 444(7118): p. 465-8.
5. Tomita, M.M., Masato, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature, 2003. 421(6922): p. 517-520.
6. McCaughan, A.N.V., V. B.; Buckley, S.; Allmaras, J. P.; Kozorezov, A. G.; Tait, A. N.; Nam, S. W.; Shainline, J. M., A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors. Nature 2019. 2(10): p. 451-456.
7. Van Damme, J.M., S.; Acharya, R.; Ivanov, Ts.; Perez Lozano, D.; Canvel, Y.; Demarets, M.; Vangoidsenhoven, D.; Hermans, Y.; Lai, J. G.; Vadiraj, A. M.; Mongillo, M.; Wan, D.; De Boeck, J.; Potočnik, A.; De Greve, K., Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature, 2024. 634(8032): p. 74–79.
8. de Nivelle, M.J.M.E.B., M. P.; de Vries, R.; Wijnbergen, J. J.; de Korte, P. A. J.; Sánchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E., Low noise high-Tc superconducting bolometers on silicon nitride membranes for far-infrared detection. Applied Physics Letters, 1997. 71(15): p. 2208–2210.
9. Wolak, M.A., et al., Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition. Physical Review Special Topics - Accelerators and Beams, 2014. 17(1).
10. Agulló-Rueda, F., et al., Lattice damage in 9-MeV-carbon irradiated diamond and its recovery after annealing. Carbon, 2017. 123: p. 334-343.
11. Herrmannsdorfer, T., et al., Superconducting state in a gallium-doped germanium layer at low temperatures. Phys Rev Lett, 2009. 102(21): p. 217003.
12. Bekbolsynov, E., Comprehensive analysis of solar cell behavior: effects of light intensity, temperature, and operational modes. Technobius Physics, 2023. 2(2).
13. Blase, X.B., E.; Chapelier, C.; Klein, T.; Marcenat, C., Superconducting group-IV semiconductors. Nature Materials, 2009. 8(5): p. 375–382.
14. Wright, J.G.C., C. S.; Muller, D. A.; Xing, H. G.; Jena, D., Structural and electronic properties of NbN/GaN junctions grown by molecular beam epitaxy. APL Materials, 2022. 10(5): p. 051103.
15. Frasca, S.C., E., Hybrid superconductor–semiconductor electronics. Nature Electronics, 2019. 2(10): p. 433–434.
16. Larsen, T.W., et al., Semiconductor-Nanowire-Based Superconducting Qubit. Phys Rev Lett, 2015. 115(12): p. 127001.
17. Doh, Y.-J.v.D., J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S., Tunable Supercurrent Through Semiconductor Nanowires. 2005. p. 9.
18. Naik, A.B., O.; LaHaye, M. D.; Armour, A. D.; Clerk, A. A.; Blencowe, M. P.; Schwab, K. C., Cooling a nanomechanical resonator with quantum back-action. Nature, 2006. 443(7108): p. 193–196.
19. uvauchelle, J.-E.F., A.; Marcenat, C.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.; Lefloch, F., Silicon Superconducting Quantum Interference Device. Applied Physics Letters, 2015. 107(7): p. 072601.
20. Bohuslavskyi, H.R., A.; Hätinen, J.; Rantala, A.; Shchepetov, A.; Koppinen, P.; Lehtinen, J. S.; Prunnila, M., Scalable on-chip multiplexing of silicon single and double quantum dots. The European Physical Journal A, 2025. 61: p. Article number 58.
21. Shim, Y.P. and C. Tahan, Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor. Nat Commun, 2014. 5: p. 4225.
22. Chiodi, F.D., J.-E.; Marcenat, C.; Débarre, D.; Lefloch, F., Proximity-induced superconductivity in all-silicon superconductor /normal-metal junctions. Physical Review B, 2017. 96: p. 024503.
23. Levenson-Falk, E.M.S., Sadman Ahmed, A Review of Design Concerns in Superconducting Quantum Circuits. Research Squar, 2024.
24. Pozar, D.M., Microwave Engineering. 4 ed. 2012, Hoboken, NJ: John Wiley & Sons.
25. Reagor, M.J., Introduction to Circuit Quantum Electrodynamics. 2019: Stanford University.
26. Martin Göppl, A.F., M Baur, Romeo Bianchetti, Stefan Filipp, Johannes M Fink, Peter J Leek, G Puebla, Lars Steffen, and Andreas Wallraff, Coplanar waveguide resonators for circuit quantum electrodynamics. Journal of Applied Physics, 2008. 104(11): p. 112604.
27. Sebastian Probst, F.S., Pavel A Bushev, Alexey V Ustinov, and Martin Weides, Efficient and robust analysis of complex scattering data under noise in microwave resonators. Review of Scientific Instruments, 2015. 86.
28. McRae, C.R.H., et al., Materials loss measurements using superconducting microwave resonators. Rev Sci Instrum, 2020. 91(9): p. 091101.
29. M Stoutimore Khalil, M.S., FC Wellstood, and KD Osborn, An analysis method for asymmetric resonator transmission applied to superconducting devices. Journal of Applied Physics, 2012. 111(5): p. 054510.