簡易檢索 / 詳目顯示

研究生: 李傳昇
Li, Chuan-Sheng
論文名稱: 以量子分子動力學方法研究單層奈米碳管之成長
A study of the growth of Single-walled carbon nanotube using quantum molecular dynamics
指導教授: 翁政義
Weng, Cheng-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 70
中文關鍵詞: 奈米碳管量子分子動力學電弧製程
外文關鍵詞: Carbon nanotube, quantum molecular dynamic, arc manufacture
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以量子分子動力學模擬奈米碳管之電弧製程在不同製成參數上之探討。參數有管徑之大小、基板溫度、沉積原子的入射動能。
    首先,原子間的勢能函數採用Tight-Binding 多體勢能來計算,
    並遵循牛頓第二運動定律,在整個數值計算方面採用Leap-Frog 修正
    法來計算系統原子受力後的位置和速度等物理量,並使用Verlet 鄰
    近表列和截斷勢能法的演算法則來計算原子間的相互作用力,以減少
    整個電腦數值模擬的運算時間。
    由模擬結果發現:
    1. 剛開始成長時,當管徑越小,越容易形成五角環,而管徑越大,越容易形成六角環。

    2. 不管任何管徑,溫度越大,越容易形成封閉端,這是因為溫度越大,則管的端部原子震動頻率會加快,會增加管末端封閉的機會。
    3. 管徑較小的碳管:當入射的原子動能越大,則促使端部的原子會有較大的位移,因此封閉時間會縮短,但當入射動能過大,會影響到封閉端原子的鍵結,會因此在端部無法形成封閉端,而會形成紊亂的結構。相對管徑較大的碳管:大管徑上形成的封閉結構,其封閉端的穩定性較小管徑的差,因此,雖然入射動能較大,會讓封閉更快速,但是能影響封閉端原子的鍵結之入射動能,就會相對比小管徑的還小。

    In this study, the arc vaporization which makes nanotubes have been simulated by quantum molecular dynamics for different manufacture parameters. Parameters are radius of nanotube, substrate temperature and incident energy of droping atoms.
    First, The many body potential functions for intermolecular are described by the tight-binding potential. Following the second law of Newton, the Leap-Frog method is adopted to calculate atom’s physical properties, such as position and velocity, etc. To reduce the computer simulation time, the algorithms of Verlet list and cut-off potential are applied to calculate the interactive force between atoms.
    The results of loading :
    1. When the radius of tube is getting small, it is easier to form the pentagon from the beginning of growth. And when the radius of tube is getting bigger, it is easier to form the hexagon.
    2. No matter how the radius of tube is, when the temperature is getting hotter, it is easier to form the closed-end. This is because when the temperature gets hotter, the vibration frequencies of atoms in the end of the tube would get more quickly. And it would also increase the opportunities to seal the end of the tube.
    3. The smaller radius tube of carbon nanotube: When the incident kinetic energy of atoms get larger, it would make a bigger displacement of atoms in the end of the tube; therefore it would shorten the closed-time. But while the incident kinetic energy is much larger, it would affect the binding of the closed-end of atoms and would form the disorder structures. In opposition, atoms in the end of the tube which the bigger radius tube is much stable than the small ones. So incident energy of bigger radius tube which can disturb the cap structure is less than small ones.

    中文摘要……………………………………………………………….I 英文摘要………………………………………………………………II 致謝…………………………………………………………………..IV 目錄…………………………………………………………………….V 表目錄……………………………………………………………….VII 圖目錄………………………………………………………………VIII 符號說明…………………………………………………………………………XI 第一章緒論………………………………………………..1 1-1 前言………………………………………………………………1 1-2 研究動機與目的…………………………………………………5 1-3 分子動力學應用於電弧製程奈米碳管之文獻回顧……………7 1-4 本文架構…………………………………………………………9 第二章物理模型與勢能函數…………………………...10 2-1 以電弧製程製造奈米碳管介紹及所使用之物理模型介紹…...10 2-2 邊界條件設定…………………………………………………...14 2-3 系統原子間作用力與勢能函數………………………………...16 2-3-1. 系統原子間作用力…………………………………16 2-3-2. Tight-binding potential………………………..16 2-4 運動方程式…………………………………………………….27 2-4-1. Leap-Frog 方法…………………………………27 2-4-2. Gear 五階預測修正法…………………………….28 2-5 程式模擬流程圖………………………………………………...31 第三章分子動力學數值模擬方法…………………………….33 3-1 物理參數……………………………………………………..33 3-2 設定初始值…………………………………………………..34 3-3 截斷半徑法…………………………………………………..36 3-3-1. Verlet 表列法………………………………….37 3-4 熱平衡………………………………………………………..42 第四章模擬結果分析與討論………………………………………44 4-1. 碳管管徑對製程過程中形貌的影響……………………..44 4-2. 基板溫度對碳管成長之影響……………………………..51 4-3. 入射原子之動能對碳管成長之影響……………………..56 第五章總結與建議…………………………………………….63 5.1 總結..……………………………………………………….63 5.2 建議.…………………………………………………………65 參考文獻……………………………………………………………..66 自述……………………………………………………………………70

    1. 楊衛,宏微觀斷裂力學,國防工業出版社,北京,1995.
    2. Huang Zeng, Ling Zhu, Guangming Hao and RongSheng Sheng,
    “Synthesis of Various Forms of Carbon Nanotubes by Arc discharge“,
    Carbon, Vol. 36, pp. 259 ~ 261, 1998.
    3. C. Journet, L. Alvarez, V. Micholet, T. Guillard, M. Larry de la
    Chapelle, E. Anglaret et al., “Single Wall Carbon Nanotubes: Two
    ways of production“ , Synthetic Metals Vol.103 , pp. 2488 ~ 2489,
    1999.
    4. N.A. Kiselev, A. P. Moravsky, A. B. Ormont, D. N. Zakharov, “SEM
    and HREM study of the internal structure of nanotube rich carbon
    cathodic deposits“ , Carbon, Vol.37, pp. 1093 ~ 1103, 1999.
    5. A. Maiti, C. J. Brabec, C. M. Roland and J. Bernholc, “Growth
    Energetics of Carbon nanotubes“, Phys. Rev. Lett., Vol. 73, pp. 2468 ~
    2471, 1994.
    6. A. Maiti, C. J. Brabec, C. M. Roland and J. Bernholc, “Growth of
    Carbon nanotubes: a molecular dynamics study“, Chem. Phys.
    Lett.,Vol.236, pp. 150 ~ 155, 1995.
    7. D.-H. Oh, Young Hee Lee, “Stability and cap formation mechanism of
    single-walled carbon nanotubes“ Phys. Rev. B, Vol. 58, pp. 7407 ~
    7411, 1998.
    8. A. Maiti, C. J. Brabec, C. M. Roland and J. Bernholc, “Theory of
    carbon nanotube growth“, Phys. Rev. B, Vol. 52 , pp. 14850 ~ 14858,
    1995.
    9. C. H. Xu, C. Z. Wang, C. T. Chen and K. M. Ho, “A Transferable
    tight-binding potential for carbon“, J. Phys. Condens. Matter, Vol. 4,
    pp. 6047 ~ 6053, 1992.
    10. M. Endo, H. W. Kroto, J. Phys. Chem., Vol. 96, pp. 6941~6491, 1992 .
    11. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Chem. Phys. Lett.,
    195 ,pp. 537~537, 1992.
    12. R. Car, M. Parrinello, Phys. Rev. Lett., Vol. 66 , pp. 2663~2663, 1991.
    13. M. Buongiorno Nardelli, C. Brabec, A. Maiti, C. Roland and J.
    Bornholc, “Lip – Lip interactions and the Growth of Multiwalled
    Carbon nanotubes” , Phys. Rev. Lett., Vol. 80, pp. 313 ~ 316, 1998.
    14. R. Che, L.-M. Peng, S. Zhang, Z. Sun, ”Energetics of high temperature
    dimmer desorption reconstruction at the end of small zigzag carbon
    nanotubes” , Chem. Phys. Lett., Vol. 368 , pp. 20 ~ 26, 2003.
    15. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of
    Carbon nanotubes , imperial college press,British, Ch 5, 1999.
    16. J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons,
    New York, 1992.
    17. D. C. Rapaport, The Art of Molecular Dynamics Simulation,
    Cambridge University Press, London, 1997.
    18. J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston,
    1990.
    19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids,
    Oxford Science, London, 1991.
    20. D. Frenkel and B. Smit, Understanding Molecular Simulation,
    Academic Press, San Diego, 1996.
    21. D. W. Heermann, Computer Simulation Method, Springer-Verlag,
    Berlin, 1990.
    22. J. C. Slater, and G. F. Koster, "Simplified LCAO method for periodic
    potential problem", Physical Review Vol. 94, No. 6 , pp.
    1498-1524,1954.
    23. C. Kittle, Introduction to Solid State Physics, John Wiley & Sons, New
    York, 1996.
    24. 劉東昇編譯, 化學量子力學,徐氏基金會出版,台北,1992。
    25. 江元生, 結構化學,五南圖書出版,台北,1998。
    26. L. Colombo, "A source code for tight-binding molecular dynamics
    simulation", Computational Materials Science, Vol. 12 , pp. 278-287,
    1998.
    27. J. Z. H. Zhang, Theory and Application of Quantum Molecular
    Dynamics, World Scientific Publishing Company, Singapore, 1999.
    28. 江逢霖, 量子化學原理,復旦大學出版社,上海,1990。
    29. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, "A transferable
    tight-binding potential for carbon", J. Phys.: Condens. Matter, Vol. 4 ,
    pp. 6047-6054, 1992.
    30. Kwon, R. Biswas, C. Z. Wang, K. M. Ho, and M. Soukoulis,
    "Transferable tight-binding models for silicon", Physical Review B Vol.
    49 No. 11, pp.7242-7250, 1994.
    31. R. P. Gupta, "Lattice relaxation at a metal surface", Physical Review B
    Vol. 23 No. 12 ,pp. 6265-6270, 1981.
    32. J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons,
    New York, 1992.
    33. D. C. Rapaport, The Art of Molecular Dynamics Simulation,
    Cambridge University Press, London, 1997.
    34. J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston,
    1990.
    35. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids,
    Oxford Science, London, 1991.
    36. D. Frenkel and B. Smit, Understanding Molecular Simulation,
    Academic Press, San Diego, 1996.
    37. J. Z. H. Zhang, Theory and Application of Quantum Molecular
    Dynamics, World Scientific Publishing Company, Singapore, 1999.
    38. M. Shibahara, and S. Kotake, "Quantum molecular dynamics study on
    light-to-heat absorption mechanism: two metallic atom system", Int. J.
    Heat Mass Transfer Vol. 40 No. 13, pp. 3209-3222, 1997.
    39. M. Shiga, M. Tachikawa, and S. Miura, "Ab inito molecular orbital
    calculation considering the quantum mechanical effect of nuclei by
    path integral molecular dynamics", Chemical Physics Letters, Vol.
    332 , pp. 396-402, 2000.
    40. O. Knospe, and P. Jungwirth, "Electron photodetachment in C60:
    Quantum molecular dynamics with a non-empirical, 'on-the-fly'
    calculated potential", Chemical Physics Letters Vol. 317, pp. 529-534 ,
    2000.
    41. M. Pavese, S. Jang, and G. A. Voth, "Centroid molecular dynamics: A
    quantum dynamics method suitable for the parallel computer", Parallel
    Computing Vol. 26 , pp. 1025-1041, 2000.
    42. L. Wang, "A rigorous quantum molecular dynamics study of a
    collinear A + BC AB + C reaction", Chemical Physics Vol. 237, pp.
    305-314, 1998.
    43. J. Ka, and S. Shin, "Dynamics of molecular ion ( I?
    2 ) in condensed
    phases: hybrid quantum/classical method for a linear chain model",
    Chemical Physical Letters Vol. 269, pp. 227-234, 1997.

    下載圖示 校內:2004-07-11公開
    校外:2004-07-11公開
    QR CODE