簡易檢索 / 詳目顯示

研究生: 葉威麟
Ye, Wei-lin
論文名稱: 光譜相位飄移對線性解調光碼信號之效應的探討
Phase Shift Effect on Linear Discriminations over Optical Spectral-Phase Coded Signal Waveforms
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 68
中文關鍵詞: 光分碼多重擷取系統光分碼多工頻譜相位編碼多重擷取干擾液晶空間光調變器馬赫貞德干涉儀。
外文關鍵詞: Optical code-division multiple-access (OCDMA), Wavelength-division multiplexing (WDM), Spectral-phase coding (SPC), Multiple-access interference (MAI), Liquid crystal spatial light modulator (LC-SLM), Mach-Zehnder Interferometer (MZI).
相關次數: 點閱:163下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近十幾年光分碼多重存取技術允許多個使用者同時非同步地存取網路系統利用光纖提供的廣大頻寬,因此這個技術非常適合應用於區域網路中。早期的光分碼多重存取技術系統是在時域上將輸入訊號和近似正交碼序列來進行調變,但這樣所需的碼長很長,且使用者的總數受限於系統中的多重擷取干擾。
    因此,我們提出了一個架構用光頻譜相位編碼技術來實現光分碼多重存取,架構中包括了液晶空間光調變器用來做相位編碼,馬赫貞德干涉儀,和一組平衡檢測器來檢測光干涉的訊號強度,利用以頻譜相位編碼為主之光分碼多重存取技術,在接收端運用光的干涉效應和碼的正交特性搭配平衡檢測技術來消除其他使用者的多重擷取干擾,而萃取出預期使用者的信號。然而,在實際傳輸過程中傳送端和接收端的相位並不可能一樣,而產生了相位偏移效應,這可能會導致接收錯誤的訊息,有些論文提出了使用光鎖相迴路來解決,但在實際上難以實現,所以在本篇論文我們對提出的架構去討論和模擬相位偏移效應產生的影響。

    In recent years, optical code-division multiple-access (OCDMA) systems have been proposed for multiple accesses to utilize the vast bandwidth available in optical fiber. Optical CDMA systems are believed to provide asynchronous access for each user in the system, which is especially suitable for usage in local area network (LAN).
    We propose an optical code-division multiple-access (SPE-OCDMA) codecs scheme for proof-of-concept demonstration. The spectrally phase- codecs are constructed with Liquid-Crystal Spatial-Light Modulator (LC-SLM), Mach-Zehnder Interferometer (MZI), and differential balanced photo-detectors. Spectrally phase encoding (SPE) scheme of optical CDMA has been introduced to eliminate the MAI effect by using the orthogonal coding, such as Walsh-Hadamard codes. However, the transmission processes will produce phase shift between transceiver codecs. The phase shift will destroy orthogonality of the signal codes and cause detection error in the receiver. There were articles dealt with solutions using optical phase- locked loop (OPLL), but it’s not easy to implement. We consider the effect of phase shift in the SPC-OCDMA system and good result is obtained with little system degradation.

    中文摘要 i ABSTRACT ii 誌謝 iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vii Chapter 1. Introduction 8 1.1 Introduction to Optical CDMA 9 1.2 Optical phase-locked loop 21 1.3 Motivation of the Research 24 1.4 Sections Preview of the Thesis 27 Chapter 2. Overviews on Optical CDMA Techniques 28 2.1 Walsh-Hadamard codes 28 2.2 Liquid Crystal Spatial Light Modulators 31 Chapter 3. System description over Optical Spectral-Phase coding 35 3.1 OCDMA system with the proposed WH codes pairs. 35 3.2 The theory of low coherence interferometer 39 3.3 Receiver detection scheme 42 Chapter 4. The effect of phase shift and system performance 48 4.1 The effect of phase shift 48 4.2 System Performance 55 Chapter 5. Conclusions 61 References 63

    [1] M. Arumugam, “Optical fiber communication – An overview,” Pramana-J. Phys., vol. 57, no. 5-6, pp. 849-869, Nov.-Dec. 2001.
    [2] M. Veeraraghavan, R. Karri, T. Moors, M. Karol, and R. Grobler, “Architectures and protocols that enable new applications on optical networks,” IEEE Commun. Mag., vol. 39, no. 3, pp. 118-127, Mar. 2001.
    [3] P. Urquhart, “Component technologies for future optical networks,” IEE Proc. Optoelectron., vol. 150, no. 1, pp. 3-8, Feb. 2003.
    [4] H. Kogelnik, “High-capacity optical communications: personal recollections,” IEEE J. Sel. Top. Quantum Electron, vol. 6, no. 6, pp. 1279-1286, Nov.-Dec. 2000.
    [5] Y. Sasaki, “Optical fiber devices,” the 2nd International Conference on Transparent Optical Networks, pp. 9-12, June 5-8, 2000.
    [6] K. Nakagawa and S. Shimada, “Optical amplifiers in future optical communication systems,” IEEE LCS, vol. 1, no. 4, pp. 57-62, Nov. 1990.
    [7] R. Giles and Li Tingye, “Optical amplifiers transform long-distance lightwave telecommunications,” Proc. IEEE., vol. 84, no. 6, pp. 870-883, June 1996.
    [8] E. Abbaspour-Sani, Ruey-Shing Huang, and Chee Yee Kwok, “A novel optical accelerometer,” IEEE Electron Device Lett., vol. 16, no. 5, pp. 166-168, May 1995.
    [9] M. R. Amersfoort, C.R. de Boer, F. P. G. M. van Ham, M. K. Smit, T. Demeester, J. J. G. M. van der Tol, and A. Kuntze, “Phased-array wavelength demultiplexer with flattened wavelength response,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 300-302, Feb. 1994.
    [10] K. Okamoto, M. Ishii, Y. Hibino, Y. Ohmori, and H. Toba, “Fabrication of unequal channel spacing arrayed-waveguide grating multiplexer modules,” IEEE Electron. Lett., vol. 31, no. 17, pp. 1464-1466, Aug. 1995.
    [11] Wenhua Lin, Haifeng Li, Y. J. Chen, M. Dagenais, and D. Stone, “Dual-channelspacing phased-array waveguide grating multi/demultiplexers,” IEEE Photonics Technol. Lett., vol. 8, no. 11, pp. 1501-1503, Nov. 1996.
    [12] R. I. Laming and M. N. Zervas, “Fibre Bragg gratings and their applications,” the 11-th International Conference on Integrated Optics and Optical Fibre Communications; also the 23-rd European Conference on Optical Communications, vol. 4, no. 448, pp. 81-83, Sept. 1997.
    [13] K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
    [14] T. Erdogan, “Fiber Grating Spectra,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, Aug. 1997.
    [15] V. Mizrahi, S. Alexander, J. Berthold, S. Chaddick, and W. Jones, “The Future of WDM Systems,” the 11-th International Conference on Integrated Optics and Optical Fibre Communications; also the 23-rd European Conference on Optical Communications, vol. 1, no. 448, pp. 137-141, Sep.1997.
    [16] J. Kani, M. Teshima, K. Akimoto, N. Takachio, H. Suzuki, K. Iwatsuki, and M. Ishii, “A WDM-based optical access network for wide-area gigabit access services,” IEEE Commun. Mag., vol. 41, no. 2, pp. S43-S48, Feb. 2003.
    [17] R. Dixon, “Why spread spectrum?,” IEEE Communications Soc. Mag., vol. 13, pp. 21-25, July 1975.
    [18] R. Scholtz, “The spread spectrum concept,” IEEE Trans. on Communications, vol. 25, no. 8, pp. 748-755, Aug. 1977.
    [19] N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technol., vol. 2, no. 17, pp. 149-168, 1996.
    [20] P. Prucnal, M. Santoro and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” IEEE Network, vol. 4, no. 5, pp. 547-554, May 1986.
    [21] W. C. Kwong, P. Perrier and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Transactions on Communications, vol. 39, no. 11, pp. 1625-1634, Nov. 1991.
    [22] K. P. Jackson, G. Xaio and H. J. Shaw, “Coherent optical fiber delay-line processor,” Electron. Lett., vol. 22, no. 25, pp. 1335, 1986.
    [23] M. E. Marhic, “Trends in optical CDMA, in Multigigabit Fiber Communications,” SPIE Proceedings vol. 1787, pp.80-97, 1992.
    [24] D. D. Sampson and D. A. Jackson, “Spread spectrum optical fiber network based on pulsed coherent correlation,” Electron. Lett., vol. 26, no. 19, pp. 1550-1552, Sept. 1990.
    [25] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Optical phase coding for code division multiple access,” IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1401-1404, Dec. 1992.
    [26] D. Sampson, R. A. Griffin, and D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” IEEE J. Lightwave Technol., vol. 12, no. 11, pp. 2001-2010, Nov. 1994.
    [27] J. Enriguz-Gabeiras, J. Camany, and R. Fernandez de Caleya, “Effect of nonideal and fiber parameters on the performance of an all optical coherent code division multiple access,” Proceedings of EFOC/LAN’92, pp. 146-151, June 1992.
    [28] M. Brandt-Pearce and B. Aazhang, “Multiuser detection for optical code division multiple access systems,” IEEE Transactions on Communications, vol. 42, no. 2, pp.1801-1810, Feb./Mar./Apr. 1994.
    [29] J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems,” J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, Mar. 1990.
    [30] D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Letter, vol. 5, no. 4, pp. 479-482, 1993.
    [31] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide NxN wavelength multiplexer,’’ IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar 1995.
    [32] F.T. Herzog , “An optical phase locked loop for coherent space communications,’’ Diss, Federal Institute of Technology ETH Zurich, Nr.16384, 2006.
    [33] J. Salehi , “Code division multiple-access techniques in optical fiber networks – Part 1: Fundamental principles,’’ IEEE Trans. Commun., vol. 37, pp. 824-833, Aug. 1989.
    [34] Lei Wang , A.M. Weiner, “Programmable spectral phase coding of an amplified spontaneous emission light source,” Optics Communications, vol. 167, pp. 211–224, 1999.
    [35] A.M. Weiner , J.P. Heritage , E.M. Kirschner , “High-resolution femtosecond pulse shaping,” J. Opt. Soc., vol. 5, pp. 1563-1572, 1988.
    [36] A.M. Weiner , D.E. Leaird , J.S. Patel , and J.R. Wullert, “Progammable femto-second pulse shaping by use of a multi-element liquid-crystal phase modulator,” Opt. Lett., vol. 15, pp. 326-328, 1990.
    [37] J. P. Heritage and A. M. Weiner, “Advances in spectral optical code division multiple-access communications,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1351–1369, Sept. 2007.
    [38] S. P. Bhooplapur , F. J. Quinlan , M. Akbulet , P. J. Delfyett“A “Linear technique for discrimination of optically coded waveforms using optical frequency combs,” IEEE Photonics Technology Letters, pp. 1673-1676 , 2012.
    [39] D. Huang , E. A .Swanson , C. P. Lin , J. S. S chuman , W. G. Stinson , W. Chang , M. R. Hee, T. Flotte , K. Gregory , C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, pp. 1178–1181, 1991.
    [40] A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightw. Technol., vol. 17, no. 2, pp. 328–342, Feb. 1999.
    [41] P. R. Prucnal, "Optical Code-Division Multiple-Access: Fundamentals and Applications," CRC Press, 2006.
    [42] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron., vol. 28, pp. 908-920, Apr. 1992.

    下載圖示 校內:2018-08-13公開
    校外:2018-08-13公開
    QR CODE