| 研究生: |
黃哲斌 Huang, Che-Pin |
|---|---|
| 論文名稱: |
建立人體器官地圖及數位學習方法 Build Human Organ Map and Digital Learning Method |
| 指導教授: |
陳立祥
Chen, Li-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 立體醫學影像 、數位學習工具 、三維物件操作 |
| 外文關鍵詞: | 3D Computer Medical Objects, Digital Learning Tools, 3D Object Manipulation |
| 相關次數: | 點閱:89 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Marching Cube演算法建立人體器官的立體醫學影像並研發人體器官地圖系統,進行一系列資料處理,包括建立人體器官物件、組織人體器官地圖及開發數位學習工具。將此套機制應用於數位學習及教學,讓授課老師可以自行編制教材並以數位化學習方式進行教課,以符合老師及學生使用上的需求,學生也可以對人體器官進行人體分層顯示及模擬切割手術,希望學生學習過程中,可以自行去探索人體內部的結構。
同時,為了使切割作法更加彈性,提出多樣化切割方式,讓使用者進行模擬手術切割時,選擇一適合現況的手術工具進行。除此之外,由於使用者在操作場景物件的過程中,往往會希望將一連串相關的醫學影像儲存成動畫的形式,以方便教學用途或者影片交流,故提供學生學習過程錄影功能,將這些影像的改變過程存成影像檔,並提供預覽檔案的機制,讓使用者立即觀看錄影結果。
本研究所實作之系統可做為醫療人員之培訓工具,對於未來臨床醫學影像之教學,有助於提昇學生主動學習及獲取知識的能力。
This research uses Marching Cube algorithm to build 3D computer medical objects of human organs. We develop the human organ map system to do a series of processes, including the creation of human organ objects, organizations of the human organ objects, and the development of digital learning tools. This set of mechanisms can be used in an e-learning environment so that teachers can easily prepare e-learning teaching materials and students can use them for more efficient learning. The users can display the hierarchical human organs and simulate cutting operation so that the students can freely explore the internal structures of the human body.
In order to make the object manipulation more intuitive, we develop tools to enable users to simulate cutting operation. In addition, the users make a movie file for an animated 3D object to make the visualization of the 3D medical objects much easier. The system also offers students with some recording function for some object manipulation processes to simplify the replay of the processes.
In this study, the system can be used for learning of human anatomy more efficiently and effectively.
[1]鄭文林,立體影像在大腸鏡模擬及光學微影分析之應用,台南,國立成功大學碩士論文,2009。
[2]林纓如,三維物件處理於虛擬手術及模擬的應用,台南,國立成功大學碩士論文,2009。
[3]蔣正彥,立體醫學影像的品質提昇與應用,台南,國立成功大學碩士論文,2008。
[4]李崇偉,物體輪廓線模型及其3D影像在醫學上的應用,台南,國立成功大學碩士論文,2007。
[5]丁國森,交談式表面圖像與體素圖像的整合系統及其應用,台南,國立成功大學碩士論文,2006。
[6]Frank D. Luna/著, 黃聖峰/譯,“3D遊戲程式設計入門:使用DirectX 9.0實作”,博碩文化,2004。
[7]Frank D. Luna, Introduction to 3D Game Programming with DirectX 9.0, WordwarePublishing, 2003.
[8]Foundational Modal Explorer.
http://fme.biostr.washington.edu:8089/FME/index.html.
[9]Visualization Toolkit.http://www.vtk.org
[10]Lorensen, W. E., Cline, H. E., “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, 1987, v.21 n.4, p.163-169.
[11]Wikipedia. http://en.wikipedia.org/wiki/Publish/subscribe
[12]M.J. Ackerman “The Visible Human Project: A Resource for Education,” Academic Medicine, vol. 74, no. 6, pp. 667-670, 1999.
[13]V. Spitzer, M.J. Ackerman, A.L. Scherzinger, and D. Whitlock, “The Visible Human Male: A Technical Report”, J Am Med Inform Assoc., vol. 3, no. 2, pp. 118-130, Mar/Apr. 1996.
[14]Pommert, M. Riemer, T. Schiemann, R. Schubert, U. Tiede, and K.H. Höhne, "Knowledge-based and 3D imaging systems in medical education", Information Processing '94, Proc. vol. II: Applications and Impacts, IFIP Transactions A-52, North-Holland, Amsterdam, pp. 525-532, 1994.
[15]Bright, S., and Laflin, S, Shading of solid voxel models. Computer Graphics Forum 1986, 5,2, 131-138.
[16]Chen, L. S., Herman, G. T., Reynolds, R. A., and Udupa, J. K, Surface shading in the Cuberille environment. IEEE Computer Graphics and Applications, 1985, 5, 12, 33-43.
[17]Gibson, S. F. F. Using distance maps for accurate surface reconstruction in sampled volumes. In IEEE Symposium on Volume Visualization, 1998, 23–30.
[18]Höhne, K. H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U., and Wiebecke, G. 3D visualization of tomographic volume data using the generalized voxel model. The Visual Computer, 1990, 6, 1, 28-36.
[19]Ratliff, F. Contour and contrast. Scientific American, 1972, 226, 6, 91-101.
[20]Tam, Y. W., and Davis, W. A. Display of 3D medical images. Proceedings on Graphics Interface, 1988, 78-86.
[21]Hoehne, K. H., and Bernstein, R. Shading 3D-images from CT using grey-level gradients. IEEE Transactions on Medical Imaging , 1986, 5, 1, 45-57.
[22]Magnusson, M., Lenz, R., and Danielsson, P. -E. Evaluation of methods for shaded display of CT volumes. Proceedings 9th International Conference Pattern Recognition, 1988, 2, 1287-1294.
[23]Chen, L. S., and Sontag, M, Representation, display, and manipulation of 3D digital scenes. Computer Vision, Graphics, and Image Processing, 1989, 48, 2, 190-216.
[24]Losasso, T. F., Schaefer, S., and Warren, J.. Dual contouring of hermite data. ACM Transactions on Graphics 2002, 21, 3, 339–346.
[25]Lighthouse3d.com.
http://www.lighthouse3d.com/tutorials/maths/plane/.