| 研究生: |
劉鴻輝 Liu, Hon-Huei |
|---|---|
| 論文名稱: |
金屬原子層沉積溫度調變與後退火熱處理用於製作高效能P型金屬氧化物半導體元件 ALD Temperature Modulation and Extra Post Metal Anneal to Fabricate High Performance P-type MOSFET Device |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 高介電係數 、界面層 、等效氧化物厚度 、金屬沉積後退火 、矽酸鉿 、原子層級沉積 |
| 外文關鍵詞: | high-K (HK), Interfacial Layer (IL), Equivalent oxide thickness (EOT), Post Metal Anneal (PMA), Atomic Layer Deposition (ALD) |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體元件製程的演進上,傳統的去耦合電漿氮化與氮化後退火處理在平面後金屬閘極金屬氧化物半導體元件的製造上,可以鞏固氧原子避免擴散至高介電係數介面層氧化物,降低元件的平帶電壓急遽下降,但是在三維立體結構金屬氧化物半導體元件製作上,會遇到瓶頸,因此在本論文中,藉由調變原子層級沉積溫度變化,並在氮化鈦金屬沉積後製程加上退火與額外的高溫氨氣侵入,提供了高介電係數介面層氧化物處理的新途徑。降低子層級沉積溫度可以減少柵極漏電流密度(Jg),改善平帶電壓(Vfb)和有效功函數(EWF),但是此法會等效氧化層的厚度。然而,透過添加額外的後金屬沉積退火和額外的高溫氨氣侵入製程,可以避免上述缺點。但是從柵極電介質開發的經驗來看,較高的氮化物濃度和氧化物厚度可能導致元件產生更多的界面陷阱和缺陷路徑。實驗結果顯示等效氧化層的厚度 (EOT) 的提昇會導致整體的閘極控制能力變弱。從反向思考,這也提供了一種降低金屬柵極厚度的方法,並可維持元件的特性。因此本研究成果可以為下一代三維立體結構金屬氧化物半導體元件微縮的製程開發上提供一個可能的解決方案。
To prevent the flat band voltage roll off of the 3-D MOSFET device, improve gate leakage and device performance, the experiment of ALD TiN temperature change, and add extra post metal deposition anneal with NH3 soak were introduced in this thesis. For the development of the IL / high-K gate last MOSFET or 3-D devices, this applicaiton provides a new path of the interfacial layer SiO2 and high-K Hf-silicate gate oxide treatment. To lower ALD deposition temperature can benefit fewer gate leakage current density (Jg) and improve the flat-band voltage (Vfb) and effective work function (EWF). The worse is to sacrifice the equivalent oxide thickness. By add extra post metal deposition anneal and NH3 soak process can improve the Jg, Vfb and EWF, but it will much more worse the EOT than the others condition. The higher nitride concentration and oxide thickness could caused device more interfacial traps and defect path from the experience of gate dielectric development. However, the thickness EOT also provide a way to thin down metal gate thickness and provide a potential method for the next generation 3-D MOSFET device development. From the tranditonal direct IL or high-K layer direct treatment to barrier layer soak process , this experiment provide a possible approach to the metal and oxide layers thickness thin down.
[1] Greg Yeric, “Moore’s Law at 50: Are we planning for retirement,” in IEDM Tech. Pages: 1.1.1 - 1.1.8, 2015.
[2] 許哲華,“The Study of Tuning Work Function with Multi-Layer Metal Stacks for Deep Nano high-K/Metal Gate CMOSFET Applications,” Master's degree dissertation, National Cheng Kung University Institute of Electrical Engineering, Tainan, Taiwan, 2011.
[3] Ying-Tsung Chen,“Using high-K Dielectric/Metal Gate with the Chemical Oxide Integration Scheme to Achieve High Performance 20-nm n/pMOS Devices,” PHD's degree dissertation, National Cheng Kung University Institute of Electrical Engineering, Tainan, Taiwan, 2014.
[4] 陳語, " Ramping Metrology Projecting Breakdown Characteristics of Nano-scaled high-k Gate Dielectric," Master's degree dissertation, National Tapiei University of Technology University Institute of Mechanical and Electrical Engineering, Tainan, Taiwan, 2012.
[5] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice–Hall Inc., 2001.
[6] S. Hyun, J. H. Han, H. B. Park, H. J. Na, H. J. Son, H. Y. Lee, H. S. Hong, H. L. Lee, J. Song, J. J. Kim, J. Lee, W. C. Jeong, H. J. Cho, K. I. Seo, D.W. Kim, S. P. Sim, S. B. Kang, D. K. Sohn, S. Y. Choi, H. K. Kang, and C. H. Chung, “Aggressively scaled high-k last metal gate stack with low variability for 20 nm logic high performance and low power applications,” in Proc. VLSI Technol. Dig., pp. 32–33, 2011.
[7] J. Franco, B. Kaczer, G. Eneman, J. Mitard, A. Stesmans, V. Afanasev, T. Kauerauf, P. J. Roussel, M. Toledano-Luque, M. Cho, R. Degraeve, T. Grasser, L. Å. Ragnarsson, L. Witters, J. Tseng, S. Takeoka, W. E. Wang, T. Y. Hoffmann, and G. Groeseneken, “6Å EOT Si0.45Ge0.55 pMOSFET with optimized reliability (VDD=1V): meeting the NBTI lifetime target at ultra-thin EOT ,” in IEDM Tech. Dig., pp. 70–73, 2010.
[8] G. Bersuker, C. S. Park, H. C. Wen, K. Choi, J. Price, P. Lysaght, H. H. Tseng, O.Sharia, A. Demkov, J. T. Ryan, and P. Lenahan, “Origin of the flatband-voltage roll-off phenomenon in metal/high-k gate stacks,” in IEEE Trans. Electron. Dev., vol. 57, no. 9, pp. 2047-2056, Sep. 2010.
[9] H. C. Wen, R. Choi, G. A. Brown, T. Boscke, K. Matthews, H. R. Harris, K. Choi, H. N. Alshareef, H. Luan, G. Bersuker, P. Majhi, D. L. Kwong, and B. H. Lee, “Comparison of Effective Work Function Extraction Methods Using Capacitance and Current Measurement Techniques,” in ELECTRON DEVICE LETTERS, vol. 27, no. 7, pp. 598-601, 2006.
[10] R. Jha, J. Gurganos, Y. H. Kim, R. Choi, J. Lee, and V. Misra, “A capacitance-based methodology for work function extraction for metals on high-k,” in IEEE Electron DeviceLetter, vol.25, no.6, pp.420-423,Jun.2004.
[11] G. Bersuker, C. S. Park, H. C. Wen, K. Choi, J. Price and P. Lysaght, Hsing-Huang Tseng, O. Sharia, Alex Demkov, Jason T. Ryan, and P. Lenahan, “Origin of the Flatband-Voltage Roll-Off Phenomenon in Metal/high-Gate Stacks, in TRANSACTIONS ON ELECTRON DEVICES, vol. 57, no. 9, pp. 2047-2056, 2010.
[12] J. R. Hauser and K. Ahmed, "Characterization of ultra-thin oxides using electrical C–V and I–V measurements", in AIP Conf. Proc. 449, p.235-239, 1998.
[13] J. R. Hauser, "Extraction of experimental mobility data for MOS devices, " in IEEE Trans. Electron Devices, vol. 43, no. 11, p.1981-1988, Nov. 1996.
[14] W. K. Shih, S. Jallepalli, G. Chindalore, S. Hareland, C. M. Maziar, and A. F. Tasch, UTQUANT 2.0, User's Guide. The Univerisity of Texas at Austin, October 1997.
[15] S. H. Lo, D. A. Buchanan, and Y. Taur, "Modeling and characterization of quantizatoin, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides," in IBM J. Res. Develop., vol. 43, pp. 327-337, 1999.
[16] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," in IEEE Electron Device Lett., vol. 18, pp. 209-211, 1997.
[17] C. A. Richter, E. Vogel, A. Hefner, and G. Brown, "Quantum mechanical device simulation benchmarking," presented at Gate stack & reliability engineering workinggroup meeting, North Carolina State University, 1999.
[18] Y. C. Yeo, P. Ranade, Q. Lu, R. Lin, T. J. King and C. Hu, "Effects of high-κ dielectrics on the workfunctions of metal and silicon gates," in VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on , p.49-50, 2001.
[19] Y. C. Yeo, P. Ranade, T. J. King and C. Hu; , "Effects of high-κ gate dielectric materials on metal and silicon gate workfunctions," in IEEE Electron Device Letters, vol.23, no.6, pp.342-344, Jun 2002.
[20] O. Sharia, A. A. Demkov, G. Bersuker, and B. H. Lee, “Theoretical study of the insulator/insulator interface: Band alignment at the SiO2 / HfO2 junction,” in Phys. Rev. B, Condens. Matter, vol. 75, no. 3, p. 035306, Jan. 2007.
[21] Chemming Calvin Hu, “Modern Semiconductor Devices for Integrated Circuits,” Peason Education Taiwan, Prentice Hall Inc., p.5-5-P5-8 2008.
[22] 施敏, 伍國鈺 原著,張鼎張, 劉柏村 譯著, “半導體元件物理學 第三版,” 新竹市, 交大出版社, p.242-P251, 2010。
[23] L. Wu, H. Y. Yu, X. Li, K. L. Pey, K. Y. Hsu, H. J. Tao, Y. S. Chiu, C. T. Lin, J. H. Xu, H. J. Wan, “Investigation of ALD or PVD (Ti-rich vs. N-rich) TiN metal gate thermal stability on HfO2 high-K,” in Proc. VLSI Technol. Dig., pp. 90-91, 2010.
[24] H. B. Profijt, S. E. Potts, M. C. Van de Sanden, and W. M. M. Kessels,, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” in Journal of Vaccuum Science Technology, A29(5), p050801-1 2011.
[25] L. Wu, H. Y. Yu, X. Li, K. L. Pey, K. Y. Hsu, H. J. Tao, Y. S. Chiu, C. T. Lin, J. H. Xu, H. J. Wan, “Atomic Layer Deposition Principles Characteristics and Nanotechnology Applications Second Edition,” 100 Cummings Center, Suite 541J, Beverly, MA 01915-6106, Scrivener Publishing LLC. 2013. P166-P168
[26] A. Veloso, G. Boccardi, L. Å. Ragnarsson, Y. Higuchi, J. W. Lee, E. Simoen, Ph. J. Roussel, M. J. Cho, S. A. Chew, T. Schram, H. Dekkers, A. Van Ammel, T. Witters, S. Brus, A. Dangol, V. Paraschiv, E. Vecchio, X. Shi, F. Sebaai, K. Kellens, N. Heylen, K. Devriendt, O. Richard, H. Bender, T. Chiarella, H. Arimura, A. Thean, and N. Horiguchi, “Highly Scalable Effective Work Function Engineering Approach for Multi-VT Modulation of Planar and FinFET-based RMG high-k Last Devices for (Sub-) 22 nm Nodes,” in Proc. VLSI Technol. Dig., pp. 194-195, 2013.
[27] K. S. Yew, D. S. Ang, and L. J. Tang, “A New Method for Enhancing high-k/Metal-Gate Stack Performance and Reliability for high-k Last Integration,” in IEEE ELECTRON DEVICE LETTERS,, vol. 34, no. 2, pp. 295-297, 2013.
[28] Y. T. Chen, S. I. Fu, W. T. Chiang, C. T. Lin, S. H. Tsai, S. W. Wang, and S. J. Chang, “Chemical oxide interfacial layer for the high-k-last/gate-last integration scheme,” in IEEE Electron Dev. Lett., vol. 33, pp. 946-948, 2012.
[29] Y. T. Chen, S. I. Fu, C. T. Lin, W. T. Chiang, S. J. Chang, M. S. Lin, and J. S. Jeng,“Effects of postdeposition annealing on a high-k-last/gate-last integration scheme for 20 nm nMOS and pMOS,” in J. Vac. Sci. Technol. B, vol. 31, 020604, 2013.
[30] K. Kim, and K., Yong, “Physical and electrical characterizations of ultrathin Si-rich Hf-silicate film and Hf-silicate/SiO2 bilayer deposited by atomic layer chemical vapor deposition,” in Journal of Applied Physics, pp. 044106 - 044106-5, 2006.
[31] K. H. Kyeom, H. S. Jung, J. H. Jang, Park Jinho, Park Tae-Joo, Lee Seok-Hee, Hwang Cheol-Seong, “Dependence of optimized annealing temperature for tetragonal phase formation on the Si concentration of atomic-layer-deposited Hf-silicate film,” in Journal of Applied Physics, pp. 114107 - 114107-6, 2011.
[32] M. H. Cho, K. B. Chung and D. H. Ko, “Change in phase separation and electronic structure of nitrided Hf-silicate films as a function of composition and post-nitridation anneal,” in Applied Physics Letters, vol. 89, no. 14, pp. 142908 - 142908-3, 2006
[33] D. Y. Cho, K. S. Park, B. H. Choi, S. J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, R. Jung, J. C. Lee, and S. D. Bu, “Control of silicidation HfO2/Si(100) interfaces,” in Appl. Phys. Lett., vol. 86, no. 4, pp. 041913-1– 041913-3, Jan. 2005.
[34] K. B. Chung, C. N. Whang, M. H. Cho, C. J. Yi and D. H. Ko, “Suppression of phase separation in Hf-silicate films using NH3 annealing treatment,” in Applied Physics Letters, vol. 88, no. 8, pp. 081903-081903-3, 2006.
[35] T. J. Park, K. J. Hwan, Jang Jae Hyuck, Na Kwang Duk, Seong Hwang Cheol and Won Jeong Yeon, “Effects of surface treatments using O3 and NH3 on electrical properties and chemical structures of high-k HfO2 dielectric films on strained Si1-x Gex /Si substrates,” in Journal of Applied Physics, vol. 103, no. 8, pp. 084117 - 084117-11, 2008.
[36] Tae Joo Park, Kim Jeong Hwan, Jang Jae Hyuk, Seo Minha, Seong Hwang Cheol and Won Jeong Yeon, “Improvements in the electrical properties of high-k HfO2 dielectric films on Si1-x Gex substrates by postdeposition annealing,” in Appl. Phys. Lett., vol. 90, no. 4, pp. 042915 - 042915-3, 2007.
[37] M. Kadoshima, T. Matsuki, S. Miyazaki, K. Shiraishi, T. Chikyo, K. Yamada, T.Aoyama, Y. Nara, and Y. Ohji, “Effective-work-function control by varying the TiN thickness in poly-Si/TiN gate electrodes for scaled high-k CMOSFETs,” in IEEE Electron Dev. Lett., vol. 30, no. 5, pp. 466–468, May 2009.
[38] Ying-Tsung Chen, Chien-Ting Lin, Wen-Tai Chiang, Mon-Sen Lin, Chih-Wei Yang, Jian-Cun Ke, and Shoou-Jinn Chang, “ALD TiN Barrier Metal for pMOS Devices With a Chemical Oxide Interfacial Layer for 20 nm Technology Node,” in IEEE Electron Dev. Lett., vol. 35, no. 3, pp. 306–308, March 2014.
[39] Xiuyan Li and Akira Toriumi, “Self-decomposition of SiO2 due to Si-chemical potential increase in SiO2 between HfO2 and substrate - Comprehensive understanding of SiO2-IL scavenging in HfO2 gate stacks on Si, SiGe and SiC - ,” in IEDM Tech. Dig., pp.21.4.1-21.4.4, 2015.
校內:2022-07-31公開