簡易檢索 / 詳目顯示

研究生: 洪健翔
Hong, Chien-Hsiang
論文名稱: 以物件基礎的動作向量還原策略應用在H.264/AVC
An Object-base Motion Vector Recovery Strategy for H.264/AVC
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 54
中文關鍵詞: 影像還原H.264/AVC
外文關鍵詞: H.264/AVC, error concealment
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用在H.264/AVC上的高效率的錯誤還原方法,在本論文中利用動作向量搭配物件的觀念將遺失的區塊像素值以及動作向量還原。在H.264解碼的過程中,每一個4x4像素的小區塊(block)都會存入一個動作向量(Motion Vector),當遇到遺失的區域時,我們將遺失區域周圍的區塊找出來,並且用
    周圍區塊的動作向量來找出與前一張畫面中對應的區塊,藉由尋找前一張畫面區塊的動作向量相似且連接的區塊,將動作向量相似且連接在一起的區塊設定為一個物件,利用物件整體移動的特性將物件像素拿來回填遺失區域的像素,同時連同動作向量一併還原。動作向量的還原是有必要的,因為下一個巨方塊的動作向量會使用本方塊之動作向量做為預測值
    實驗數據顯示我們的演算法能提供比目前已提出的演算法更好的解決方案,並且更適合人眼視覺上感受,而在計算時間方面仍然能保持即時解碼的效率。

    In this Thesis, we propose an efficient motion vector recovery algorithm which is based on an object-base module for a new coding standard H.264/AVC. In H.264 decoding time, each 4x4 block has a motion vector. When there is a damage region, it should be recovered. Our proposed method is to find out the neighbor blocks of the damage region. Then we use the motion vectors of neighbor blocks to find out the reference block in the reference frame. If the motion vectors around reference block are similar to each other, we set these blocks as an object. Because the blocks in the same object usually move together, the object would recover to the lost region with the pixel values and motion vectors. It is important to recover the motion vectors, because he motion vector of next block would use the motion vector of this block as predictor.
    Experimental results show that our algorithm could provide a more efficient solution than previous methods. By object-base module, it provides comfortable view for human vision. The computation complexity of the proposed algorithm is low and the decoding can be done in real time.

    Content i Figure iii Table v Chapter 1 Introduction 1 Chapter 2 Background and Related Work 4 2.1 Introduction to H.264/AVC 4 2.1.1 Video Coding Layer, VCL 4 2.1.2 H.264 Network Abstraction Layer, NAL 5 2.1.3 Intra-frame prediction 7 2.1.4 Inter-frame prediction 7 2.1.5 Multiple Reference Frames Motion Compensation 7 2.1.6 H.264/AVC Slice mode 8 2.1.7 H.264/AVC Video structure 9 2.2 Error Concealment 11 2.2.1 Boundary Match Algorithm 14 2.2.2 Motion vector recovery algorithm using polynomial model 15 Chapter 3 The Proposed Object-based Error Concealment Algorithm 20 3.1 Select 4x4 reliable MVs in blocks near damage slice 21 3.2 Search object from previous frame and damage slice recovery 23 3.3 Motion vector recovery 26 3.4 Extend method to enhance result 29 3.5 Action flow 32 Chapter 4 Simulation Results 33 4.1 Test environment 33 4.2 The results 35 4.3 The advantage of object-base method 44 4.3.1 Compare with Polynomial Module algorithm 44 4.3.2 The advantage of object-based module for visual effect 46 4.3.3 Conceal two continues slices 47 Chapter 5 Conclusions 50 Chapter 6 Future Works 51 REFERENCE 52 BIOGRAPHY 54

    [1] Y. Wang, Q. F. Zhu, and L. Shaw, “Maximally smooth image recovery in transform coding,” IEEE Trans. Commun., vol. 41, no. 10, pp. 1544–1551, Oct. 1993.

    [2] J.W. Park, J.W. Kim, and S. U. Lee, “DCT coefficients recovery-based error concealment technique and its application to the MPEG-2 bit stream error,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 845–854, Dec. 1997.

    [3] Y. Wang and Q. F. Zhu, “Error control and concealment for video communication: A review,” Proc. IEEE, vol. 86, no. 5, pp. 974–997, May 1998.

    [4] J. W. Suh and Y. S. Ho, “Error concealment techniques for digital TV,” IEEE Trans. Broadcast., vol. 48, pp. 299–306, Dec. 2002.

    [5] Z.Wang, Y.Yu, and D. Zhang, “Best neighboring matching: An information loss restoration technique for block-based image coding systems,” IEEE Trans. Image Processing, vol. 7, no. 7, pp. 1056–1061, Jul. 1998.

    [6] S. Tsekeridou and I. Pitas, “MPEG-2 error concealment based on blockmatching principles,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 646–658, Jun. 2000.

    [7] Yanling Xu; Yuanhua Zhou;” H.264 video communication based refined error concealment schemes” Consumer Electronics, IEEE Transactions on Volume 50, Page(s):1135 – 1141 Nov. 2004

    [8] Y. Zhang and K.-K. Ma, “Error concealment for video transmission with dual multiscale Markov random field modeling,” IEEE Trans. Image Processing, vol. 12, no. 2, pp. 236–242, Feb. 2003.

    [9] M. Bystrom, V. Parthasarathy, and J. W. Modestino, “Hybrid error concealment schemes for broadcast video transmission over ATM networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 868–881, Sep. 1999.

    [10] S. Cen and P. C. Cosman, “Decision trees for error concealment in video decoding,” IEEE Trans. Multimedia, vol. 5, no. 1, pp. 1–7, Mar. 2003.

    [11] X. Li and M. T. Orchard, “Novel sequential error-concealment techniques using orientation adaptive interpolation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 857–864, Oct. 2002.

    [12] Mei-juan Chen; Che-Shing Chen; Ming-Chieh Chi; “Temporal error concealment algorithm by recursive block-matching principle” Circuits and Systems for Video Technology, IEEE Transactions on Volume 15, Page(s):1385 - 1393 Nov. 2005

    [13] Jinghong Zheng; Lap-Pui Chau; “Efficient motion vector recovery algorithm for H.264 based on a polynomial model” Multimedia, IEEE Transactions on
    Volume 7, Page(s):507 – 513 June 2005

    [14] Y.Wang, M. M. Hannuksela,V.Varsa, A. Hourunranta, and M. Gabbouj, “The error concealment feature in the H.26L test model,” in Proc. Int. Conf. Image Processing, vol. 2, pp. 729–732. Sep. 2002,

    [15]M. Flierl, T. Wiegand, B. Girod, “Rate-constrained multihtpothesis prediction for motion-compensated video compensated video compression”, IEEE Trans. Curcits System Video Technology, vol. 12, pp. 957-969, Nov, 2002.

    下載圖示 校內:2010-07-31公開
    校外:2010-07-31公開
    QR CODE