| 研究生: |
翁宏仁 Weng, Hung-Jen |
|---|---|
| 論文名稱: |
複數空間中的分子量子運動 Molecular Quantum Motion in Complex Space |
| 指導教授: |
楊憲東
Yang, Ciann-Dong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 複數力學 、量子漢彌爾頓力學 、雙原子分子 、非線性動態 、摩斯位勢能 、量子分岔 、核自旋 、分子振動旋轉光譜 、氫分子離子 、分子軌域 |
| 外文關鍵詞: | complex mechanics, quantum Hamilton mechanics, diatomic molecules, Morse potential, nonlinear dynamic, quantum bifurcation, nuclear spin, vibration-rotation absorption spectrum, hydrogen molecular ion, LCAO |
| 相關次數: | 點閱:125 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在複數力學(Complex Mechanics)的架構下,吾人從建立在複數空間的量子漢彌爾頓力學(Quantum Hamilton mechanics)出發,藉著所獲得的非線性動態方程式,不僅可描繪粒子在複數空間的量子軌跡,證實與正統量子力學機率預測相一致的雙原子分子量子軌跡是存在的,此外還能將古典非線性動態分析的方法引進量子世界中,這嶄新的方法提供了分析量子分岔(Bifurcation) 現象的數學工具。藉著分岔參數的逐步變化可直接觀察到平衡點與軌跡分佈所產生的劇烈變化。量子漢彌爾頓力學適用於各種座標系,除了卡式座標系外,也適用於探討雙原子分子時所採用的球座標系,用以模擬耦合振盪、旋轉與自旋的量子行為,分析引進角動量運動所產生的影響,並應用在分子的振動旋轉光譜與核自旋的分析上;當探討在扁平球座標系下的氫分子離子時,吾人證實在不同初始位置條件下所獲得的大量軌跡集合,等義於由原子軌域線性理論(LCAO)所構建成的分子軌域模型。
Under the framework of complex mechanics, we utilize the Hamilton mechanics to describe quantum trajectories represented in complex space by the nonlinear dynamic equations, and point out that quantum trajectories of a diatomic molecule completely are consistent with the probabilistic prediction of standard quantum mechanics. In addition, the nonlinear Hamilton equations establish a bridge from classic nonlinear dynamic system theory to quantum bifurcation, which allows the latter to be analyzed completely by the tools developed by the former. This new approach provides the necessary mathematic framework for the analysis of quantum bifurcation and makes it possible to identify quantum bifurcation by the direct evidence of the sudden change of fixed points and their surrounding trajectories. The quantum Hamilton mechanics has a coordinate-independent expression, which could not only work in cartesian coordinate, but also work in spherical coordinates for diatomic molecules and in prolate spheroidal coordinates for hydrogen molecular ion. In terms of quantum Hamilton mechanics, we could model the rotation-dependent vibrational dynamics and nuclear spin dynamics of diatomic molecules in spherical coordinates and analyze the influence of the angular quantum motion on the vibrational quantum motion. In addition, we have computed the vibration-rotation absorption transition from complex mechanics directly. Furthermore, the superposition of the resulting complex quantum trajectories generated from different initial conditions can reconstruct the molecular orbitals determined from the linear combination of atomic orbitals (LCAO) in hydrogen molecule ion.
REFERENCES
[1] Morse P.M., 1929, “Diatomic Molecules According to the Wave Mechanics: II. Vibrational Levels,” Phys. Rev. 34, 57-64.
[2] Frost A.A., Musulin B., 1954, “Semi-empirical potential energy functions part I: The and diatomic molecules,” J. Chem. Phys. 22, 1017-1020.
[3] Hua W., 1990, “Four-parameter exactly solvable potential for diatomic molecules,” Phys. Rev. A 42, 2524-2529.
[4] Hulburt H.M., Hirschfelder J.O., 1941, “Potential energy functions for diatomic molecules,” J. Chem. Phys. 9, 61-69.
[5] Linnett J.W., 1940, “The relation between potential energy and interatomic distance in some diatomic molecules,” Trans. Faraday Soc. 36, 1123-1134.
[6] Lippincott E.R., 1953, “A new relation between potential energy and internuclear distance,” J. Chem. Phys. 21, 2070-2071.
[7] Poschl G., Teller E., 1933, “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators,” Z. Phys. 83, 143-151.
[8] Rosen N., Morse P.M., 1932, “On the vibrations of polyatomic molecules,” Phys. Rev. 42, 210-217.
[9] Rydberg R., 1931, “Graphische Darstellung einiger bandenspektroskopischer Ergebnisse,” Z. Phys. A 73, 376-385.
[10] Steele D., Lippincott E.R., 1962, “Comparative Study of Empirical Internuclear Potential Functions,” Revs. Modern Phys. 34, 239-251.
[11] Varshni Y.P., 1957, “Comparative Study of potential energy functions for diatomic molecules,” Revs. Modern. Phys. 29, 664-682.
[12] Yang C.D., 2010, “Complex Mechanics,” Asian Academic Publisher, Hong Kong.
[13] Pekeris C.L., 1934, “The Rotation-Vibration Coupling in Diatomic Molecules,” Phys. Rev. 45, 98-103.
[14] Wentzel G., 1926, “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,” Z. Phys. 38, 518-529.
[15] Kramers H.A., 1926, “Wellenmechanik und halbzählige Quantisierung,” Z. Phys. 39, 828-840.
[16] Brillouin L., 1926, “La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives,” C. R. Acad. Sci. 183, 24-26.
[17] Yang C.D., 2009, “Stability and quantization of complex-valued nonlinear quantum systems,” Chaos Solit. & Fract. 42, 711-723.
[18] Yang C.D., 2009, “A new hydrodynamic formulation of complex-valued quantum mechanics,” Chaos Solit. & Fract. 42, 453-468.
[19] Wyatt R.E., Rowland B.A., 2009, “Computational Investigation of Wave Packet Scattering in the Complex Plane: Propagation on a Grid,” J. Chem. Theor. Comput. 5, 443-451.
[20] Chou C.C., Sanz A.S., Miret-Artes S., Wyatt R.E., 2009, “Hydrodynamic view of wave-packet interference: Quantum caves,” Phys. Rev. Lett. 102, 250401. 1-4.
[21] Chou C.C., Wyatt R.E., 2008, “Quantum streamlines within the complex quantum Hamilton-Jacobi formalism,” J. Chem. Phys. 129, 124113. 1-12.
[22] Chou C.C., Wyatt R.E., 2008, “Quantum trajectories in complex space: One- dimensional stationary scattering,” J. Chem. Phys. 128, 154106. 1-10.
[23] Chou C.C., Wyatt R.E., 2008, “Quantum vortices within the complex quantum Hamilton-Jacobi formalism,” J. Chem. Phys. 128, 234106. 1-10.
[24] David J.K., Wyatt R.E., 2008, “Barrier scattering with complex-valued quantum trajectories: Taxonomy and analysis of isochrones,” J. Chem. Phys. 128, 094102. 1-9.
[25] Goldfarb Y., Degani I., Tannor D.J., 2007, “Semiclassical approximation with zero velocity trajectories,” J. Chem. Phys. 338, 106-112.
[26] Goldfarb Y., Schiff J., Tannor D.J., 2008, “Complex trajectory method in time- dependent WKB,” J. Chem. Phys. 128, 164114. 1-21.
[27] Yang C.D., 2006, “Quantum Hamilton mechanics Hamilton equations of quantum motion, origin ofquantum operators, and proof of quantization axiom,” Ann. Phys. 321, 2876-2926.
[28] Yang C.D., 2007, “The origin and proof of quantization axiom in complex spacetime,” Chaos Solit. & Fract. 32, 274-283.
[29] Yang C.D., 2008, “Spin: Nonlinear zero dynamic of orbital motion,” Chaos Solit. & Fract. 37, 1158-1171.
[30] Yang C.D., 2009, “Complex spin and anti-spin dynamics: A generalization of de Broglie-Bohm theory to complex space,” Chaos Solit. & Fract. 41, 317-333.
[31] Lambert N., Emary C., Brandes T., 2004, “Entanglement and the Phase Transition in Single-Mode Superradiance,” Phys. Rev. Lett. 92, 073602. 1-4.
[32] Emary C., Brandes T., 2004, “Quantum Chaos Triggered by Precursors of a Quantum Phase Transition: The Dicke Model,” Phys. Rev. Lett. 90, 044101. 1-4.
[33] Hou X.W., Hu B., 2004, “Decoherence, entanglement, and chaos in the Dicke model,” Phys. Rev. A 69, 042110. 1-6.
[34] Schneider S., Milburn G.J., 2002, “Entanglement in the steady state of a collective angular momentum (Dicke) model,” Phys. Rev. A 65, 042107. 1-5.
[35] Hines A.P., Dawson C.M., McKenzie R.H., Milburn G.J., 2004, “Entanglement and bifurcations in Jahn-Teller models,” Phys. Rev. A 70, 022303. 1-11.
[36] Levine G.C., Muthukumar V.N., 2004, “Entanglement of a qubit with a single oscillator mode,” Phys. Rev. B 69, 113203. 1-5.
[37] Vedral V., 2002, “The role of relative entropy in quantum information theory,” Rev. Mod. Phys. 74, 197-234.
[38] Hou X.W., Chen J.H., Hu B., 2005, “Entanglement and bifurcation in the integrable dimmer,” Phys. Rev. A 71, 034302.
[39] Hines A.P., McKenzie R.H., Milburn G.J., 2005, “Quantum entanglement and fixed- point bifurcations,” Phys. Rev. A 71, 042303. 1-9.
[40] Lee C., Hai W., Shi L., Gao K., 2004, “Phase-dependent spontaneous spin polarization and bifurcation delay in coupled two-component Bose-Einstein condensates,” Phys. Rev. A 69, 033611. 1-17.
[41] Liu J., Fu L., Ou B.Y., Chen S.G., Choi D.-II, Wu B., Niu Q., 2002, “Theory of nonlinear Landau-Zener tunneling,” Phys. Rev. A 66, 023404. 1-7.
[42] Xie Q., Hai W., 2006, “Quantum entanglement and classical bifurcations in a coupled two-component Bose-Einstein condensate,” Eur. Phys. J. D 39, 277-282.
[43] Stamatiou G., Ghikas D.P.K., 2007, “Quantum entanglement dependence on bifurcations and scars in non-autonomous systems: the case of quantum kicked top,” Phys. Lett. A 368, 206-214.
[44] Dickinson B.N., 1933, “The Normal State of the Hydrogen Molecule-Ion,” J. Chem. Phys. 1, 317-318.
[45] Goulson C.A., 1937, “The Energy and Screening Constants of the Hydrogen Molecule,” Trans. Faraday Soc. 33, 1479-1492.
[46] Guillemin V., Zener C., 1929, “Hydrogen-Ion Wave Function,” Proc. Nat. Acad. Sci. Wash. 15, 314-318.
[47] Hylleraas E.A., 1931, “Uber die Elektronenterme des Wasserstoffmolekiils,” Z. Phys. 71, 739-763.
[48] Jaff G., 1934, “Zur Theorie des Wasserstoffmolekulions,” Z. Phys. 87, 535-544.
[49] Johnson V.A., 1941, “Correction for Nuclear Motion in ,” Phys. Rev. 60, 373-377.
[50] Morse P.M., Stueckelberg E.C.G., 1929, “Diatomic Molecules According to the Wave Mechanics I: Electronic Levels of the Hydrogen Molecular Ion,” Phys. Rev. 33, 932- 947.
[51] Pritchard H.O., Skinner H.A., 1951, “Some Considerations on the Strengths of Hybrid Bands in Excited States of the Hydrogen Molecule-ion,” J. Chem. Soc. 2, 945-952.
[52] Stratton J.A., Morse P.M., Chu L.J., Hutner R.A., 1941, “Elliptic, Cylinder and Spheroidal Wave Functions,” New York: John Wiley and Sons; London: Chapman and Hall.
[53] Teller E.,1930, “Uber das Wasserstoffmolekulion,” Z. phys. 61, 458-480.
[54] Bohm D., 1952, “A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. I,” Phys. Rev. 85, 166-179.
[55] Bohm D., 1952, “A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. II,” Phys. Rev. 85, 180-193.
[56] John M.V., 2002, “Modified de Broglie-Bohm Approach Closer to Classical Hamilton- Jacobi Theory,” Found. Phys. Lett. 15, 329-343.
[57] Chou C.C., Wyatt R.E., 2006, “Computational method for the quantum Hamilton- Jacobi equation: Bound states in one dimension,” J. Chem. Phys. 125, 174103. 1-10.
[58] Chou C.C., Wyatt R.E., 2006, “Computational method for the quantum Hamilton- Jacobi equation: One-dimensional scattering problems,” Phys. Rev. E 74, 066702. 1-9.
[59] Chou C.C., Wyatt R.E., 2008, “Riccati Differential Equation for Quantum Mechanical Bound States: Comparison of Numerical Integrators,” Int. J. Quant. Chem. 108, 238- 248.
[60] Yang C.D., 2005, “Wave-Particle Duality in Complex Space,” Ann. Phys. 319, 444- 470.
[61] Yang C.D., 2006, “Modeling quantum harmonic oscillator in complex domain,” Chaos Solit. & Fract. 30, 342-362.
[62] Goldfarb Y., Degani I., Tannor D.J., 2006, “Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics,” Chem.Phys.125, 231103.1-4.
[63] Goldfarb Y., Degani I., Tannor D.J, 2007, “Response to “comment on ‘Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics’,” J. Chem. Phys. 127, 197102.1-3.
[64] Goldfarb Y., Tannor D., 2007, “Interference in Bohmian mechanics with complex action,” J. Chem. Phys. 127, 161101. 1-10.
[65] Sanz A.S., Miret-Artes S., 2007, “Comment on “Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics,” J. Chem. Phys. 127, 197101. 1-3.
[66] Wyatt R.E., Rowland B.A., 2007, “Quantum trajectories in complex phase space: multidimensional barrier transmission,” J. Chem. Phys. 127, 044103. 1-12.
[67] Chou C.C., Wyatt R.E., 2009, “Arbitrary Lagrangian-Eulerian rate equation for the Born probability density in complex space,” Phys. Lett. A 373, 1811-1817.
[68] John M.V., 2009, “Probability and Complex Quantum Trajectories,” Ann. Phys. (N.Y.) 324, 220-231.
[69] Poirier B., 2008, “Flux continuity and probability conservation in complexified Bohmian mechanics,” Phys. Rev. A 77, 022114.1-9.
[70] Leacock R.A., Padgett M.J., 1983, “Hamilton-Jacobi Theory and the Quantum Action Variable,” Phys. Rev. Lett. 50, 3-6.
[71] Yang C.D., 2008, “Complex Dynamics in Diatomic Molecules Part I: Fine Structure of Internuclear Potential,” Chaos Solit. & Fract. 37, 962-976.
[72] Nieto M.M., Simmons L.M., 1979, “Eigenstates, Coherent States, and Uncertainty Products for the Morse Oscillator,” Phys. Rev. A 19, 438-444.
[73] Skala L., Cizek J., Dvorak J., Spirko V., 1996, “Method for Calculating Analytical Solutions of the Equation: Anharmonic Oscillators and Generalized Morse Oscillator,” Phys. Rev. A 53, 2009-2020.
[74] Chiu H.H., Tsai H.L., Wang Y.C., 2005, “Artificial Diatomic Molecular Structures,” AASRC/ CCAS Joint Conference, Kaohsiung, Taiwan, 1-8.
[75] Bates D.R., Ledsham K., Stewart A.L., 1953, “Wave Functions of the Hydrog en Molecular Ion,” Ser. A Math. Phys. Sci. 246, 215-240.
[76] Lin Y.J., Jimenez-Garc K., Spielman I.B. “Spin-orbit-coupled Bose-Einstein condenstates”. Nature 471, 83-86.