| 研究生: |
許瑞廷 Hsu, Jui-Ting |
|---|---|
| 論文名稱: |
電腦輔助人工髖臼杯之分析及手術 Computer Aided Analysis and Surgery of Acetabular Cup in Total Hip Replacement |
| 指導教授: |
張志涵
Chang, Chih-Han 賴國安 Lai, Kuo-An 陳文斌 Chen, Weng-Pin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 人工髖臼杯 、初始穩定度 、骨螺絲固定 、骨質強度 、摩擦係數 、有限元素法 、偏心 、電腦輔助手術 、導航 |
| 外文關鍵詞: | Initial stability, Acetabular cup, Screw fixation, Bone stiffness, Coefficient of friction, Finite element method, Eccentricity, Computer-assisted surgery, Navigation |
| 相關次數: | 點閱:173 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全人工髖關節置換目前已廣泛應用於骨科手術中。而其中髖臼杯鬆脫為無骨水泥固定式髖臼杯組件中最常見的術後失敗原因之一。髖臼杯鬆脫主要是因為臼杯植入髖臼窩後初期的不穩定所造成。此微小的相對位移量會阻礙骨質完整長入髖臼杯表面的能力,而導致日後臼杯鬆脫。一般來說使用半球型髖臼杯配合數根骨螺絲為最常採用的固定方式之一。然而目前對於使用骨螺絲固定髖臼杯組件的力學機轉仍不十分清楚,並且髖臼杯的初期穩定度同樣會受到骨盆強度及臼杯表面摩擦係數所影響。
本研究利用電腦斷層掃瞄影像資料建立三維骨盆及髖臼杯組件之有限元素模型,利用此電腦模型來探討鎖入骨螺絲之數目及位置、骨盆骨質強度、和髖臼杯表面摩擦係數對臼杯穩定度之影響。模擬結果發現鎖入的骨螺絲只能提供螺絲附近較高的穩定性,因此在局部的區域內鎖入多支的骨螺絲對臼杯穩定度幫助不大。並且建議醫師鎖入數隻分散的骨螺絲即可提供較大的穩定面積。另外臼杯穩定度會隨著骨質強度的衰減呈現非線性的減少,因此在骨質較差的病人建議額外多鎖入數根骨螺絲來提高臼杯的穩定度。並且發現保留軟骨下骨層能提供顯著的固定能力。模擬結果顯示髖臼杯表面摩擦係數同樣會對臼杯穩定度有明顯的影響,建議醫師選用高摩擦係數的臼杯來提高髖臼杯的穩定度。
增加螺絲數目理論上可提高髖臼杯穩定度,但鎖入偏心骨螺絲卻可能減低固定效果。本研究將髖臼杯以1mm 壓配法植入人造骨盆中,來探討鎖入1 mm offset的偏心骨螺絲及鎖入15o和25o的angular偏心骨螺絲對臼杯穩定度的影響。實驗結果發現當鎖入螺絲時只有15o angular的偏心時候,並不會對臼杯穩定度造成顯著的影響,但當偏心角度達到25o或是1 mm offset的偏心螺絲時,會明顯地降低應有的固定能力。因此臨床醫師在鎖入螺絲時,必須注意鎖入的角度及位置與否正確,否則增加螺絲的數目沒辦法提供髖臼杯額外的穩定度,反而會降低固定效果。
除了臼杯鬆拖,髖球頭脫臼也是另外常見的術後後遺症之一。髖球頭脫臼主要是因為臼杯植入的角入不正確所造成,一般來說臼杯是以abduction 45o,anteversion 15o的角度植入髖臼窩中。但是對於年輕或經驗不足的醫師要將臼杯以最佳的角度植入髖臼窩中,並不是容易的事情。目前雖然有多種電腦輔助手術系統來幫助醫師植入髖臼杯,但因為此些系統價格昂貴或操作過於複雜而降低臨床使用率。本研究提出以單一影像進行空間座標定位之理論,並應用此理論研發出電腦導引髖臼杯植入之系統:CupNav system。目前實驗室校正得到理論誤差小於0.05%,系統誤差小於2o,雖然仍有許多困難及問題有待克服解決,不過本系統證明可利用最少的硬體資源及經費將電腦輔助手術應用於髖臼杯植入手術之可行性。
Total hip replacement (THR) is a common surgical procedure in orthopedics. One of the major failure modes of THR is the loosening of the cementless acetabular cup. Insufficient initial fixation results in increased micromotion between the cup and pelvis under dynamic loading, which prevents bone ingrowth and eventually causes loosening. Screws are widely used to enhance the initial stability of the acetabular cup, especially when a hemispherical cup with a porous coating is used. However, the biomechanical effects of screw fixation on the initial stability have not been thoroughly evaluated. In addition, the cup stability would be affected by the pelvic bone stiffness, the friction force, and the presence of screw eccentricity. The objective of this study was to investigate the effects of screw configurations, pelvic bone stiffness, and friction coefficient on the initial stability of the acetabular cup. In addition, we planed to quantify the effects of eccentric screwing on the cup stability. Finally, we tried to develop a single-image-based navigation system for the acetabular cup.
This study used three-dimensional finite element models of the pelvis and acetabular components to investigate the effects of the number of screws, bone stiffness, and friction coefficient on the initial stability during the performance of six activities of daily living. A commercially available hemispherical acetabular cup with five screw holes was used as the target model. The elastic modulus of the pelvis and the friction coefficient between cup and pelvic bone were systematically varied within a realistic range to assess the initial stability of the acetabular cup. The simulations showed that peak micromotion occurred at the cup rim and each inserted screw provides only a localized reduction in the relative micromotion between the cup and pelvis. The placement of multiple screws therefore suggested to put near the cup perimeter to effective reduce the peak micromotion, and with adequate spacing between them to cover various loading modes. The initial stability of the acetabular cup decreased nonlinearly with the decrease in the pelvic elastic modulus, and the subchondral bone provides good support for fixation of the cementless cup. The friction coefficient plays a less important role than the bone stiffness in resisting relative micromotion between the cup–pelvis interface.
To investigate the effects of screw eccentricity, hemispherical cups were fixed into the blocks of foam bone with zero to three screws. The effects of three types of screw eccentricity: a 1-mm offset, and angular eccentricities of 15o and 25o were evaluated to identify the influence in initial stability. The experimental results indicate that increasing the number of screws enhances the cup stability in the case of ideal screwing, i.e. without eccentricity. An angular eccentricity of 15o did not affect the cup stability when fixation with one or two screws. However, the presence of 25o of angular eccentricity significantly reduced the cup stability, while 1 mm of offset eccentricity had an even greater impact. These results should provide some guideline for surgeons when performing screw insertions in THR.
Besides cup loosening, incorrect angular placement of the acetabular cup in THR induces femoral head dislocation. Computer-assisted navigation systems to aid acetabular cup placement have been developed in the past decade, but their cost has prevented the adoption in clinical practice. In this study, a novel algorithm for determining the data points position in three-dimension from a single planar image was developed. This algorithm was employed in the development of a low-cost intrasurgical cup navigation system. This system consists of four main components: one digital camera, one laptop, one movable trolley cart, and two assisting guide frames. In vitro laboratory validation tests indicated that the possible orientation errors induced by the prototype system were less than 1.9o in abduction and 1.4o in anteversion. Although this system for acetabular cup placement is in the early phase of development, it is clear that the minimal hardware requirement (and hence low cost) of this navigation system makes it suitable for the training and evaluation of inexperienced doctors.
Ali Khan, M.A., Brakenbury, P.H., Reynolds, I.S., 1981. Dislocation following total hip replacement. J Bone Joint Surg Br 63, 214-218
Baleani, M., Fognani, R., Toni, A., 2001. Initial stability of a cementless acetabular cup design: experimental investigation on the effect of adding fins to the rim of the cup. Artif Organs 25, 664-669
Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., Duda, G.N., 2001. Hip contact forces and gait patterns from routine activities. J Biomech 34, 859-871
Bi, Y., Van De Motter, R.R., Ragab, A.A., Goldberg, V.M., Anderson, J.M., Greenfield, E.M., 2001. Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts. J Bone Joint Surg Am 83, 501-508
Bragdon, C.R., Burke, D., Lowenstein, J.D., O'Connor, D.O., Ramamurti, B., Jasty, M., Harris, W.H., 1996. Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion. J Arthroplasty 8,
Callaghan, J.J., Pedersen, D.R., Johnston, R.C., Brown, T.D., 2003. Clinical biomechanics of wear in total hip arthroplasty. Iowa Orthop J 23, 1-12
Christie, M.J., 2002. Clinical applications of Trabecular Metal. Am J Orthop 31, 219-220
Clohisy, J.C., Harris, W.H., 1999. The Harris-Galante porous-coated acetabular component with screw fixation. An average ten-year follow-up study. J Bone Joint Surg Am 81, 66-73
Cohen, R., 2002. A porous tantalum trabecular metal: basic science. Am J Orthop 31, 216-217
Courtney, A.C., Hayes, W.C., Gibson, L.J., 1996. Age-related differences in post-yield damage in human cortical bone. Experiment and model. J Biomech 29, 1463-1471
Crowther, J.D., Lachiewicz, P.F., 2002. Survival and polyethylene wear of porous-coated acetabular components in patients less than fifty years old: results at nine to fourteen years. J Bone Joint Surg Am 84, 729-735
Dalstra, M., Huiskes, R., 1995. Load transfer across the pelvic bone. J Biomech 28, 715-724
DiGioia, A.M., 3rd, Jaramaz, B., Blackwell, M., Simon, D.A., Morgan, F., Moody, J.E., Nikou, C., Colgan, B.D., Aston, C.A., Labarca, R.S., Kischell, E., Kanade, T., 1998a. The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop Relat Res, 8-22
DiGioia, A.M., 3rd, Jaramaz, B., Colgan, B.D., 1998b. Computer assisted orthopaedic surgery. Image guided and robotic assistive technologies. Clin Orthop Relat Res, 8-16
Digioia, A.M., 3rd, Jaramaz, B., Plakseychuk, A.Y., Moody, J.E., Jr., Nikou, C., Labarca, R.S., Levison, T.J., Picard, F., 2002. Comparison of a mechanical acetabular alignment guide with computer placement of the socket. J Arthroplasty 17, 359-364
DiGioia, A.M., 3rd, Plakseychuk, A.Y., Levison, T.J., Jaramaz, B., 2003. Mini-incision technique for total hip arthroplasty with navigation. J Arthroplasty 18, 123-128
DiGioia, A.M., 3rd, Blendea, S., Jaramaz, B., 2004. Computer-assisted orthopaedic surgery: minimally invasive hip and knee reconstruction. Orthop Clin North Am 35, 183-189
Ding, M., Dalstra, M., Danielsen, C.C., Kabel, J., Hvid, I., Linde, F., 1997. Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg Br 79, 995-1002
Ding, M., Danielsen, C.C., Hvid, I., 2001. Bone density does not reflect mechanical properties in early-stage arthrosis. Acta Orthop Scand 72, 181-185
Dorr, L.D., Wolf, A.W., Chandler, R., Conaty, J.P., 1983. Classification and treatment of dislocations of total hip arthroplasty. Clin Orthop Relat Res, 151-158
Dorr, L.D., Hishiki, Y., Wan, Z., Newton, D., Yun, A., 2005. Development of imageless computer navigation for acetabular component position in total hip replacement. Iowa Orthop J 25, 1-9
Egol, K.A., Kubiak, E.N., Fulkerson, E., Kummer, F.J., Koval, K.J., 2004 Biomechanics of locked plates and screws. J Orthop Trauma 18, 488-493
Engh, C.A., O'Connor, D., Jasty, M., McGovern, T.F., Bobyn, J.D., Harris, W.H., 1992. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res, 13-29
Fazzalari, N.L., Forwood, M.R., Smith, K., Manthey, B.A., Herreen, P., 1998. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22, 381-388
Garcia-Cimbrelo, E., Munuera, L., 1992. Dislocation in low-friction arthroplasty. J Arthroplasty 7, 149-155
Hadjari, M.H., Hollis, J.M., Hofmann, O.E., Flahiff, C.M., Nelson, C.L., 1994. Initial stability of porous coated acetabular implants. The effect of screw placement, screw tightness, defect type, and oversize implants. Clin Orthop Relat Res, 117-123
Hassan, D.M., Johnston, G.H., Dust, W.N., Watson, G., Dolovich, A.T., 1998. Accuracy of intraoperative assessment of acetabular prosthesis placement. J Arthroplasty 13, 80-84
Heiner, J.P., Manley, P., Kohles, S., Ulm, M., Bogart, L., Vanderby, R., Jr., 1994. Ingrowth reduces implant-to-bone relative displacements in canine acetabular prostheses. J Orthop Res 12, 657-664
Hollis, J.M., Hofmann, O.E., Stewart, C.L., Flahiff, C.M., Nelson, C.L. Effect of micromotion on ingrowth into porous coated implants using a transortical mode. 1992; Berlin, Germany. p 258.
Hube, R., Birke, A., Hein, W., Klima, S., 2003. CT-based and fluoroscopy-based navigation for cup implantation in total hip arthroplasty (THA). Surg Technol Int 11, 275-280
Huo, M.H., Betts, F., Bogumill, G.P., Kenmore, P.I., Hayek, R.J., Martinelli, T.J., 1993. Metallic wear debris in acetabular osteolysis in a mechanically stable cementless total hip replacement: report of a case. Orthopedics 16, 1277-1281
Illgen, R., 2nd, Rubash, H.E., 2002. The optimal fixation of the cementless acetabular component in primary total hip arthroplasty. J Am Acad Orthop Surg 10, 43-56
Jaramaz, B., DiGioia, A.M., 3rd, Blackwell, M., Nikou, C., 1998. Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res, 70-81
Jasty, M., Maloney, W.J., Bragdon, C.R., Haire, T., Harris, W.H., 1990. Histomorphological studies of the long-term skeletal responses to well fixed cemented femoral components. J Bone Joint Surg Am 72, 1220-1229
Jolles, B.M., Genoud, P., Hoffmeyer, P., 2004. Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop Relat Res, 174-179
Kaneko, K., Inoue, Y., Yanagihara, Y., Uta, S., Mogami, A., Iwase, H., 2000. The initial fixation of the press-fit acetabular shell--clinical observation and experimental study. Arch Orthop Trauma Surg 120, 323-325
Karrholm, J., Snorrason, F., 1992. Migration of porous coated acetabular prostheses fixed with screws: roentgen stereophotogrammetric analysis. J Orthop Res 10, 826-835
Katoozian, H., Davy, D.T., Arshi, A., Saadati, U., 2001. Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites. Med Eng Phys 23, 503-509
Kennedy, J.G., Rogers, W.B., Soffe, K.E., Sullivan, R.J., Griffen, D.G., Sheehan, L.J., 1998. Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty 13, 530-534
Kwong, L.M., O'Connor, D.O., Sedlacek, R.C., Krushell, R.J., Maloney, W.J., Harris, W.H., 1994. A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component. J Arthroplasty 9, 163-170
Lachiewicz, P.F., Suh, P.B., Gilbert, J.A., 1989. In vitro initial fixation of porous-coated acetabular total hip components. A biomechanical comparative study. J Arthroplasty 4, 201-205
Lai, K.A., Shen, W.J., Chen, C.H., Yang, C.Y., Hu, W.P., Chang, G.L., 2002. Failure of hydroxyapatite-coated acetabular cups. Ten-year follow-up of 85 Landos Atoll arthroplasties. J Bone Joint Surg Br 84, 641-646
Leenders, T., Vandevelde, D., Mahieu, G., Nuyts, R., 2002. Reduction in variability of acetabular cup abduction using computer assisted surgery: a prospective and randomized study. Comput Aided Surg 7, 99-106
Lewinnek, G.E., Lewis, J.L., Tarr, R., Compere, C.L., Zimmerman, J.R., 1978. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60, 217-220
Litsky, A.S., Pophal, S.G., 1994. Initial mechanical stability of acetabular prostheses. Orthopedics 17, 53-57
Lu, Z., McKellop, H., 1997. Effects of cement creep on stem subsidence and stresses in the cement mantle of a total hip replacement. J Biomed Mater Res 34, 221-226
MacKenzie, J.R., Callaghan, J.J., Pedersen, D.R., Brown, T.D., 1994. Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin Orthop Relat Res, 127-136
Marieb, E.N. Human anatomy & physiology New York Pearson Education; 2004.
Markel, D.C., Hora, N., Grimm, M., 2002. Press-fit stability of uncemented hemispheric acetabular components: a comparison of three porous coating systems. Int Orthop 26, 72-75
McCalden, R.W., McGeough, J.A., Court-Brown, C.M., 1997. Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture. J Bone Joint Surg Am 79, 421-427
McCollum, D.E., Gray, W.J., 1990. Dislocation after total hip arthroplasty. Causes and prevention. Clin Orthop Relat Res, 159-170
McCoy, T.H., Salvati, E.A., Ranawat, C.S., Wilson, P.D., Jr., 1988. A fifteen-year follow-up study of one hundred Charnley low-friction arthroplasties. Orthop Clin North Am 19, 467-476
Morscher, E., Schmassmann, A., 1983. Failures of total hip arthroplasty and probable incidence of revision surgery in the future. Calculations according to a mathematical model based on a ten years' experience in total hip arthroplasty. Arch Orthop Trauma Surg 101, 137-143
Morscher, E.W., Widmer, K.H., Bereiter, H., Elke, R., Schenk, R., 2002. Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty. Acta Chir Orthop Traumatol Cech 69, 8-15
Mulroy, R.D., Jr., Harris, W.H., 1990. The effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographic review. J Bone Joint Surg Br 72, 757-760
Nogler, M., Kessler, O., Prassl, A., Donnelly, B., Streicher, R., Sledge, J.B., Krismer, M., 2004. Reduced variability of acetabular cup positioning with use of an imageless navigation system. Clin Orthop Relat Res 426, 159-163
Pancanti, A., Bernakiewicz, M., Viceconti, M., 2003. The primary stability of a cementless stem varies between subjects as much as between activities. J Biomech 36, 777-785
Pazzaglia, U.E., 1990. Pathology of the bone-cement interface in loosening of total hip replacement. Arch Orthop Trauma Surg 109, 83-88
Perona, P.G., Lawrence, J., Paprosky, W.G., Patwardhan, A.G., Sartori, M., 1992. Acetabular micromotion as a measure of initial implant stability in primary hip arthroplasty. An in vitro comparison of different methods of initial acetabular component fixation. J Arthroplasty 7, 537-547
Pidhorz, L.E., Urban, R.M., Jacobs, J.J., Sumner, D.R., Galante, J.O., 1993. A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy. J Arthroplasty 8, 213-225
Pilliar, R.M., Lee, J.M., Maniatopoulos, C., 1986. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208, 108-113
Pitto, R.P., Sterzl, M., Hohmann, D., 1996. Observations on the initial stability of acetabular components in total hip arthroplasty. An experimental study. Chir Organi Mov 81, 107-118
Ramamurti, B.S., Orr, T.E., Bragdon, C.R., Lowenstein, J.D., Jasty, M., Harris, W.H., 1997. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment. J Biomed Mater Res 36, 274-280
Ries, M.D., Harbaugh, M., 1997. Acetabular strains produced by oversized press fit cups. Clin Orthop Relat Res, 276-281
Sarmiento, A., Natarajan, V., Gruen, T.A., McMahon, M., 1988. Radiographic performance of two different total hip cemented arthroplasties. A survivorship analysis. Orthop Clin North Am 19, 505-515
Sarmiento, A., Ebramzadeh, E., Gogan, W.J., McKellop, H.A., 1990. Cup containment and orientation in cemented total hip arthroplasties. J Bone Joint Surg Br 72, 996-1002
Schmalzried, T.P., Harris, W.H., 1992. The Harris-Galante porous-coated acetabular component with screw fixation. Radiographic analysis of eighty-three primary hip replacements at a minimum of five years. J Bone Joint Surg Am 74, 1130-1139
Schmalzried, T.P., Guttmann, D., Grecula, M., Amstutz, H.C., 1994. The relationship between the design, position, and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis. J Bone Joint Surg Am 76, 677-666
Schuller, H.M., Dalstra, M., Huiskes, R., Marti, R.K., 1993. Total hip reconstruction in acetabular dysplasia. A finite element study. J Bone Joint Surg Br 75, 468-474
Schwartz, J.T., Jr., Engh, C.A., Forte, M.R., Kukita, Y., Grandia, S.K., 1993. Evaluation of initial surface apposition in porous-coated acetabular components. Clin Orthop Relat Res, 174-187
Shirazi-Adl, A., Dammak, M., Paiement, G., 1993. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res 27, 167-175
Soballe, K., Hansen, E.S., B-Rasmussen, H., Jorgensen, P.H., Bunger, C., 1992 Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10, 285-299
Soto, M.O., Rodriguez, J.A., Ranawat, C.S., 2000. Clinical and radiographic evaluation of the Harris-Galante cup: incidence of wear and osteolysis at 7 to 9 years follow-up. J Arthroplasty 15, 139-145
Spears, I.R., Pfleiderer, M., Schneider, E., Hille, E., Morlock, M.M., 2001. The effect of interfacial parameters on cup-bone relative micromotions. A finite element investigation. J Biomech 34, 113-120
Stranne, S.K., Callaghan, J.J., Elder, S.H., Glisson, R.R., Seaber, A.V., 1991. Screw-augmented fixation of acetabular components. A mechanical model to determine optimal screw placement. J Arthroplasty 6, 301-305
Sutherland, C.J., Wilde, A.H., Borden, L.S., Marks, K.E., 1982. A ten-year follow-up of one hundred consecutive Muller curved-stem total hip-replacement arthroplasties. J Bone Joint Surg Am 64, 970-982
Szmukler-Moncler, S., Salama, H., Reingewirtz, Y., Dubruille, J.H., 1998. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 43, 192-203
Tai, C.L., Shih, C.H., Chen, W.P., Lee, S.S., Liu, Y.L., Hsieh, P.H., Chen, W.J., 2003. Finite element analysis of the cervico-trochanteric stemless femoral prosthesis. Clin Biomech 18, S53-58
Von Recum, J., Wendl, K., Korber, J., Wentzensen, A., Grutzner, P.A., 2003. CT-free image guided acetabulum navigation in clinical routine. Unfallchirurg 106, 929-934
Wasielewski, R.C., Cooperstein, L.A., Kruger, M.P., Rubash, H.E., 1990. Acetabular anatomy and the transacetabular fixation of screws in total hip arthroplasty. J Bone Joint Surg Am 72, 501-508
Wentzensen, A., Zheng, G., Vock, B., Langlotz, U., Korber, J., Nolte, L.P., Grutzner, P.A., 2003. Image-based hip navigation. Int Orthop 27 Suppl 1, S43-46
Wheeler, J.P., Miles, A.W., Clift, S.E., 1997. The influence of the stem-cement interface in total hip replacement--a comparison of experimental and finite element approaches. Proc Inst Mech Eng [H] 211, 181-186
Wilson-MacDonald, J., Morscher, E., Masar, Z., 1990. Cementless uncoated polyethylene acetabular components in total hip replacement. Review of five- to 10-year results. J Bone Joint Surg Br 72, 423-430
Wixson, R.L., MacDonald, M.A., 2005. Total hip arthroplasty through a minimal posterior approach using imageless computer-assisted hip navigation. J Arthroplasty 20, 51-56
Won, C.H., Hearn, T.C., Tile, M., 1995. Micromotion of cementless hemispherical acetabular components. Does press-fit need adjunctive screw fixation? J Bone Joint Surg Br 77, 484-489
Wong, A.S., New, A.M., Isaacs, G., Taylor, M., 2005. Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study. Proc Inst Mech Eng [H] 219, 265-275
Wroblewski, B.M., 1988. Wear and loosening of the socket in the Charnley low-friction arthroplasty. Orthop Clin North Am 19, 627-630
Yang, J.P., Bogoch, E.R., Woodside, T.D., Hearn, T.C., 1997. Stiffness of trabecular bone of the tibial plateau in patients with rheumatoid arthritis of the knee. J Arthroplasty 12, 798-803
Yew, A., Jagatia, M., Ensaff, H., Jin, Z.M., 2003. Analysis of contact mechanics in McKee-farrar metal-on-metal hip implants. Proc Inst Mech Eng [H] 217, 333-340
Zhang, Y., Ahn, P.B., Fitzpatrick, D.C., Heiner, A.D., Poggie, R.A., Brown, T.D., 1999. Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. Journal of Musculoskeletal Research 3, 245-251
Zheng, G., Marx, A., Langlotz, U., Widmer, K.H., Buttaro, M., Nolte, L.P., 2002. A hybrid CT-free navigation system for total hip arthroplasty. Comput Aided Surg 7, 129-145
Zioupos, P., Currey, J.D., 1998. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57-66
Zysset, P.K., Sonny, M., Hayes, W.C., 1994. Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J Arthroplasty 9, 203-216