簡易檢索 / 詳目顯示

研究生: 蔡孟岳
Tsai, Meng-Yueh
論文名稱: 不同圓孔方向與不同圓孔直徑圓孔管在循環彎曲負載下橢圓化成長與臨界橢圓化之研究
Ovalization Growth and Critical Ovalization of Round-Hole Tubes with Different Hole Direction and Different Hole Diameter Subjected to Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 62
中文關鍵詞: 6061-T6鋁合金圓孔管圓孔方向圓孔直徑控制曲率橢圓化臨界橢圓化循環圈數
外文關鍵詞: 6061-T6 aluminum alloy round-hole tube, hole direction, hole diameter, cyclic bending, controlled curvature, ovalization, critical ovalization, number of cycles, number of cycles needed to ignite failure.
相關次數: 點閱:216下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係研究不同圓孔方向與不同圓孔直徑的6061-T6鋁合金圓孔管在循環彎曲負載下的橢圓化成長與臨界橢圓化,其中不同的圓孔方向有:0、30、60與90,而不同的圓孔直徑有:2、4、6、8與10 mm。本文選用6061-T6鋁合金圓孔管在不同控制曲率下進行循環彎曲至損壞的實驗,而在實驗過程中會量測曲率、橢圓化與循環圈數。根據實驗結果顯示,橢圓化成長與循環圈數的曲線大略可分成三個階段:初始階段、第二階段與第三階段,而大多的循環圈數都在初始階段與第二階段。最後,當裂痕出現時,橢圓化成長進入第三階段並急遽的上升,最後導致6061-T6鋁合金圓孔管的斷裂。接著,本文採用Lee等人[11]所提出的關係式,並將圓孔方向與圓孔直徑變數導入相關的材料參數中,則該關係式可用來描述初始階段與第二階段的橢圓化-循環圈數關係。此外,本文採用胡庭源[15]所提出的關係式,並將圓孔方向與圓孔直徑變數導入相關的材料參數中,則該關係式可用來描述臨界橢圓化-控制曲率的關係。經由理論分析與實驗結果相互比較後發現,理論可合理描述實驗結果。

    This thesis studies the ovalization growth and critical ovalization of 6061-T6 aluminum alloy round-hole with different hole directions and different hole diameters under cyclic bending loads. The different hole directions include 0, 30, 60 and 90, and different hole diameters include 2, 4, 6, 8 and 10 mm. During the cyclic bending experiment, the curvature, ovalization, and the number of cycles needed to ignite failure are recorded. According to the experimental results, it shows that the ovalization - number of cycles relationship can be roughly divided into three stages, the initial, the second and the third stages. However, most of the bending cycles are in the initial and the second stages. When the ovalization enters the third stage, the ovalization increases sharply, which leads to the fracture of the 6061-T6 aluminum round-hole tube. In this study, the empirical formulation proposed by Lee et al. [11] was used. In addition, the variable of the hole directions was induced into the relevant material parameters. Therefore, the modified formulation can be used to describe the ovalization - number of cycles relationship for the initial and second stages. Finally, the empirical formulation proposed by Hu [15] is adopted. In addition, the variable of the hole directions was induced into the relevant material parameters. Therefore, the modified formulation can be used to describe the critical ovalization-controlled curvature relationships. After comparing the theoretical analysis with the experimental results, it is found that the theory can reasonably describe the experimental results.

    摘要I 英文延伸摘要II 誌謝XIX 目錄XXI 圖目錄XXIII 表目錄XXVIII 符號說明XXIX 第一章 緒論1 1-1 研究動機與背景1 1-2 文獻回顧2 1-3 研究目的7 第二章 實驗設備9 2-1 彎管試驗機本體9 2-2 油壓伺服控制系統12 2-3電腦監控系統17 2-4檢測儀器19 2-5 實驗效能22 第三章 實驗方法23 3-1實驗材料規格23 3-2實驗原理與方法24 3-3實驗步驟26 3-4實驗數據紀錄整理28 3-5實驗注意事項31 第四章 實驗結果及理論分析33 4-1實驗結果33 4-2理論分析39 第五章 結論59 參考文獻61

    1. P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
    2. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    3. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    4. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    5. K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel under cyclic bending”, Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
    6. K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
    7. K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
    8. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
    9. K. L. Lee, C. M. Hsu and W. F. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation”, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
    10. K. L. Lee and W. F. Pan, “Pure bending creep of SUS304 stainless steel tubes”, Steel and Composite Structures, Vol. 2, No. 6, pp. 461-474 (2002).
    11. K. L. Lee, C. C. Chung and W. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
    12. K. L. Lee, K. H. Chang and W. F. Pan, “Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending”, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
    13. K. L. Lee, M. L. Weng and W. F. Pan, “On the failure of round-hole tubes under cyclic bending”, Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).
    14. K. L. Lee, Y. S. Huang and W. F. Pan, “Influence of redundant hole on the degradation and failure of round-hole tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 44, No. 5, pp. 478-490 (2019).
    15. 胡庭源,“圓孔管在循環彎曲負載下橢圓化成長與臨界橢圓化之研究”,國立成功大學工程科學研究所碩士論文

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE