| 研究生: |
林正文 Lin, Cheng-Wen |
|---|---|
| 論文名稱: |
商用型多晶矽太陽能電池之正面電極型態最佳化研究 Optimization of Front Contact Patterns for Commercialized Multi-Crystalline Silicon Solar Cells |
| 指導教授: |
張守進
Chang, Shoou-Jinn 蔡進耀 Tsai, Chin-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 多晶矽太陽能電池 、商用型矽太陽能電池 、最佳化 、電極型態 |
| 外文關鍵詞: | Optimization, Multi-crystalline silicon solar celll, Commercialized silicon solar cell, Front contact pattern |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能電池起初主要被應用於供給太空航器電力,迄今,已超過二十年;近來,太陽能電池被大量運用于地面上與商業化應用,由於矽半導體為成本最實惠且已被發展的相當成熟,大多數商業化的太陽能電池是以矽半導體材料為主。
矽半導體主要可分成兩種:結晶矽與多晶矽半導體,兩者在商業化的應用上皆有其個自的優點與缺點;本論文中,主要著重於大面積的多晶矽半導體的研究(6英吋邊長正方形),利用低阻值金屬形成電池正面電極對商用型太陽能是不可或缺的,我們利用理論數值分析在光與電的功率損耗上取得平衡值,以最佳化我們設計的電極形態;再利用增強式電漿化學氣相沉積法與網印方法生產之樣品作為數據驗證。
平均而言,我們成功的改善短路電流至少約0.6毫安培/單位平方公分,其為主要的影響轉換效率因素之一,也因此我們在轉換效率上得到了增加;經由我們的數值分析發現了一些相當有用的概念,幫助我們可以成功預測影響效率因子的趨勢。
將來,若引入新式電極製作方法,我們所建立的數值分析方法,便可運用於電極最佳化的設計,縮短最佳化的時程。
Solar cells have been used for over two decades, initially for providing electrical power for spacecraft. Recently, they were applied for terrestrial system, and commercialized for various applications. Most of those commercialized cells are made of silicon semiconductor, which is inexpensive and mature developed for years.
Single crystalline and multi-crystalline silicon, two majority of silicon semiconductor, have their individual advantages and disadvantages as applied for commercialization. In this paper, we focus on large area multi-crystal silicon solar cell, sized 6 inches square. Metallization is an essential component for commercialized silicon solar cells owing to its low resistance. In this thesis, we apply theorem numerical methods to optimize designed patterns between the optical loss and resistance loss, existing a trade-off between them. By fabricating methods of in-line PECVD and screen-printing technique, we can verify our numerical analyses with actual samples.
In average, we succeeded in improving one of the key factors to converting efficiency, Jsc, the short-circuit current approximately at least 0.6 mA/cm2, hence we also got improvement in converting efficiency. By our theorem numerical method, some useful results came out and led us to well predict trends of all factors relevant to converting efficiency.
In the future, as introducing new technique of metallization, we can apply our numerical analyzing method to design new patterns and shorten optimizing period.
[1] V. K. Kapur, R. D. McConnell, D. Carlson, G. P. Ceasar, A. Rohatgi" Photovoltaics For The 21st Century" Published by The Electrochemical Society, Inc. Pennington, New Jersey, USA 1999
[2] Jefferey A. Mazer " SOLAR CELL:An Introduction to Crystalline Photovoltaic Technology "plished by Kluwer Academic Pulisher, Norwell,Massachusetts, USA 1997.
[3] Arnulf Jager-Waldau" Renewable and Sustainable Energy Reviews " 11 (2007) 1414–1437
[4]"CIA world fackbook"
http://www.marktaw.com/culture_and_media/politics/GlobalOil.html
[5] Jefferey A. Mazer " SOLAR CELL:An Introduction to Crystalline Photovoltaic Technology "plished by Kluwer Academic Pulisher, Norwell,Massachusetts, USA 1997
[6] C. Gerhards, C. Marckmann, M. Spiegel, P. Fath, G. Willeke, E. Bucher, J. Creager andS. Narayanan, 'Progress in production line implementation of V-textured low costmulticrystalline silicon solar cells', Proceedings of the 2nd WCPEC, Vienna, Austria, 1998
[7] Green, M.A.”High efficiency silicon solar cells” Optoelectronic and Microelectronic Materials And Devices Proceedings, 1996 Conference on, Vol., Issue, 8-11 Dec 1996
[8] Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, and Y. Hamakawa ”A new type of high efficiency with a low-cost solar cell having the structure of a µc-SiC/polycrystalline silicon heterojunction” Journal of Applied Physics, May 15, 1990, Volume 67, Issue 10, pp. 6538-6543
[9] Mikio Taguchi, et al. “HIT Cells High Efficiency Crystalline Si Cells with Novel Structure” PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS Prog. Photovolt: Res Appl. 2000;8: 503-513
[10]V.K. kapur, G.P. Ceasar, et al. “PHOTOVOLTAICS FOR THE 21ST CENTURY” p.145~152, p274~288
[11] 蔡進譯,“超高效率太陽電池從愛因斯坦的光電效應談起”物理雙月刊27卷五期2005年10月號
[12] S.M.Sze ”SEMECONDUCTOR DEVICE Physics and Technology “ in Chapter 2.
[13] S.M.Sze ”SEMECONDUCTOR DEVICE Physics and Technology “ p.315~p.328
[14] Y.C. Fang, S.J. Chang, C.Y. Tsai ”The study of low temperature oxidation on the commercial crystalline silicon solar cell“ IEOSE, NCKU, Tainan, Taiwan. Thesis for Master of Science, p.5~14
[15] M. Spiegel, P. Fath, K. Peter, B. Buck, G. Willeke and E. Bucher, 'Detailed study on microwave induced remote hydrogen plasma passivation of multicrystalline silicon',Proceedings of the 13th EC Photovoltaic Solar Energy Conference, Nice, France, 1995, p. 421-424.
[16] B. Bitnar, R. Glatthaar, C. Marckmann, M. Spiegel, R. Tölle, P. Fath, G. Willeke and E. Bucher, “Lifetime investigations on screenprinted silicon solar cells”, Proceedings of the2nd WCPEC, Vienna, Austria, 1998.
[17]Suresh Kumar Dhungel, Jinsu Yoo, Kyunghae Kim, Bojan
Karunagaran, Hwang Sunwoo, Devanesan Mangalaraj and Junsin Yi “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing”Materials Science in Semiconductor Processing, Volume 7, Issues 4-6, 2004, Pages 427-431
[18] D.Mathiot,”Modeling of hydrogen diffusion in n- and p-type silicon” Phys. Rev. B, 40, 1989
[19] B. Bitnar, R. Glatthaar, S. Keller, J. Kugler, M. Spiegel, P. Fath, G. Willeke, E. Bucher,F. Duerinckx, J. Szlufcik, J. Nijs, R. Mertens, H. Nussbaumer and F. Ferrazza, “Investigation of the passivation properties of PECVD-silicon-nitride layers on siliconsolar cells”,
Proceedings of the 14th EC Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997, p. 1431-1434.
[20] M.C. Wei, S.J. Chang, , C.Y. Tsia, C.H. Liu and S.C. Chen “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells” Solar Energy Volume 80, Issue 2, February 2006, Pages 215-219
[21] Leguijt et al., 1996 C. Leguijt, P. Lolgen, J.A. Eikelboom, A.W. Weber, F.M. Schuurmann, W.C. Sinke, P.F.A. Alkemade, P.M. Sarro, C.H.M. Maree and L.A. Verhoef, Low temperature surface passivation by PECVD, Solar Energy Mater. Solar Cells 40 (1996), pp. 297–302
[22]. Ruby et al., 1994 D.S. Ruby, W.L. Wilbanks and C.B. Fleddemann,"A statistical analysis of the effect of PECVD deposition. Parameters on surface and bulk recombination in silicon solar cells", IEEE 1st WCPEC (1994), pp. 1335–1338.]
[23] Schuurmans F.M. “Crystal-orientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers.” 1996 25th IEEE Photovoltaic Specialists Conference, pp. 485–491
[24] Martin A. Green “SOLAR CELLS” pp. 138–145.
[25] Martin A. Green “SOLAR CELLS” Chapter 3.,p.40~59
[26] Martin A. Green “SOLAR CELLS” Chapter 4.,p.62~80
[27] C.T. SAH et al., “Carrier Generation and Recombination in p-n Junctions….,” Proceedings of the IRE 45(1957), 1228-1243
[28] Martin A. Green “SOLAR CELLS” p.95
[29] S.M.Sze ”SEMECONDUCTOR DEVICE Physics and Technology “p.112
[30] Martin A. Green “SOLAR CELLS” p.70~80
[31] M.A. Green.“General Solar Cell Factor…..” Solid-State Electronics 20(1997) 265-266
[32] Michael Radike* and Johann Summhammer “Electrical and Shading Power Losses of Decorative PV Front Contact Patterns“ PROGRESS IN PHOTOVOLTAICS: RESEARCH AND
APPLICATIONS, Prog. Photovolt: Res. Appl. 7, 399~407 (1999)
[33] H. Murrmann and D. Widmann, “Current crowding on metal contacts to planar devices,” IEEE Trans Electron Devices,vol. ED-16, pp. 1022-1024, Dec. 1969
[34] P. L. Hower, W. W. Hooper, B. B. Cairns, R. D. Fairman, and D.A. Tremere, “The GaAs field effect transistor” In Semiconductors and Semimetals, vol. 7A, R. K. Willardson and A. C. Beer, Eds.New York: Academic Press, 1971, pp. 147-200
[35] H. H. Berger, “Contact resistance and contact resistivity,”J.Electrochem. Soc., vol. 119, pp. 507-514, Apr. 1972
[36] G. K. Reeves and H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett., vol. EDL-3, pp. 111-113, May 1982;”IEEE Electron. Lett., vol. 18, pp. 1083-1085, Dec. 1982.3.5 “Contact resistance of polysilicon silicon interconnections,” Electron. Lett.,
vol. 18, pp. 1083-1085, Dec. 1982.