簡易檢索 / 詳目顯示

研究生: 林昭安
Lin, Zhao-An
論文名稱: 濺鍍法調控二氧化鈦奈米結構形貌及其光觸媒效應
Nanostructure morphology tuning of TiO2 using sputtering for the application of photocatalysis
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 93
中文關鍵詞: 二氧化鈦奈米柱光觸媒高效能濺鍍法
外文關鍵詞: TiO2 nanorods, photocatalysis, combinatorial sputtering
相關次數: 點閱:91下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦因其化學性質、機械性質及光學特性的優越性,成為一個具潛力的光觸媒。二氧化鈦具有較大能隙(3.2 eV),為紫外光波段,故其使用受到了限制。若二氧化鈦能隙能縮減至可見光範圍可以大幅增加其應用性。此外,其表面積也對光觸媒效率有很大的影響,奈米柱的光觸媒是一個可以發展的策略。
    在本實驗中,利用反應性濺鍍法直接沉積二氧化鈦奈米柱於基板上。沉積時的工作距離、濺鍍壓力及基板的形貌為主要影響二氧化鈦奈米柱的關鍵。此外,利用氮離子及鉻離子的摻雜來調控二氧化鈦之能隙並以薄膜繞射儀、二次電子顯微鏡、穿透式電子顯微鏡及紫外光-可見光光譜儀來分析其特性。討論奈米結構、氮與鉻離子的摻雜及降解時之環境(pH) 對光降解甲基藍的影響。最後發現摻雜11%氮離子及20%鉻離子在pH=7的環境中其光降解的效率最高。本實驗證明可藉由摻雜它種離子以提升二氧化鈦奈米柱光觸媒的效率。

    TiO2 is a promising photocatalyst due to its superior chemical, mechanical, and optical properties. However, the wide band gap ( 3.2 eV) of TiO2 has limited its application in the UV range. Band gap tuning is extremely critical to extend its applications under visible light,. In addition, high aspect ratio morphology tuning, ex. nanorods structure, is another strategy to enhance its photocatalysis.
    We have tried to grow TiO2 nanorods directly on a substrate by reactive sputtering. We have discussed the key factors to grow the TiO2 nanorod structure by sputtering, including the working distance, working pressure and substrate morphology. Nitrogen and chromium were incorporated into TiO2 nanorods to tune their band gaps. Various characterization tools such as GIXRD, SEM, TEM, and UV-vis were used to study the properties of TiO2 nanorods. Methylene blue (MB), which can be photodegraded, heavily depending on the morphology of TiO2, the amounts of Cr and N dopants, and the chemical environment (pH), was used as the target pollutant for a photodegradation test. We found N doped TiO2 nanorods made by the approach (b) and Cr-gradient doped TiO2 nanorods showed the best photodegraded efficiency at pH = 7. Modification of pristine TiO2 nanorods has been demonstrated an effective approach to enhance their photodegration ability.

    摘要 I Abstract II 誌謝 III Content IV Table content VI Figure content VIII Chap1 Introduction 1 1.1 Background 1 1.2 TiO2 photocatalyst and its development 1 1.3 Structure and physical properties of TiO2 3 1.4 Variables of a photocatalytic reaction 7 1.5 Fabrication methods for TiO2 photocatalyst 11 1.6 Research objectives 16 Chapter 2 Literature Review 18 2.1 Introduction 18 2.2 Morphology modifications and nanorod structure 18 2.3 Chemical modifications 19 Chapter 3 Experiment 25 3.1. Materials 25 3.2 Experimental flow process 25 3.3 Instruments 26 3.4 Characterizations 28 Chap 4 Results and Discussions 37 4.1 Manufacturing of TiO2 nanorod structures 37 4.2 Physical properties of the TiO2 nanorods made by a direct route 51 4.3 Photocatalytic properties of TiO2 nanorods made by a direct route 54 4.4 N-TiO2 nanorods 56 4.5 Cr doped TiO2 nanorods 76 4.6 Summary for the photocatalysis application 84 Chap 5 Conclusion and Future work 85 5.1 TiO2 nanorods made by sputtering 85 5.2 Application in photocatalysis 85 5.3 Future work 86 References 87

    1. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews, 1995. 95(3): p. 735-758.
    2. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001. 293(5528): p. 269-271.
    3. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
    4. Frank, S.N. and A.J. Bard, HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF CYANIDE AND SULFITE IN AQUEOUS-SOLUTIONS AT SEMICONDUCTOR POWDERS. Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
    5. TADASHI MATSUNAGA, R.T., TOSHIAKI NAKAJIMA, NORIYUKI NAKAMURA, and A.T. KOMINE, Continuous-Sterilization System That Uses Photosemiconductor Powders. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1988. 54.
    6. Oregan, B. and M. Gratzel, A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature, 1991. 353(6346): p. 737-740.
    7. ROGER I. BICKLEY, T.G.-C., L.P. JOHN S. LEE, T AND, and R.J.D. TILLEYD, A Structural Investigation of Titanium Dioxide Photocatalysts. JOURNAL OF SOLID STATE CHEMISTRY, 1991. 92.
    8. Wang, R., et al., Light-induced amphiphilic surfaces. Nature, 1997. 388(6641): p. 431-432.
    9. Anpo, M., Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure and Applied Chemistry, 2000. 72(9): p. 1787-1792.
    10. Zhu, Y.F., et al., Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Analytical Chemistry, 2002. 74(1): p. 120-124.
    11. Galoppini, E., Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1283-1297.
    12. Kamat, P.V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C, 2007. 111: p. 26.
    13. Nakata, K. and A. Fujishima, TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2012. 13(3): p. 169-189.
    14. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8): p. 53-229.
    15. Yi Hu, H.-L.T., C.-L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles.Ceramic Society, 2003. 23: p. 691-696.
    16. Banfield, H.Z.a.J.F., Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem., 1998: p. 2073-2076.
    17. Gupta, S.M. and M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 2011. 56(16): p. 1639-1657.
    18. Mayer, J.T., et al., TITANIUM AND REDUCED TITANIA OVERLAYERS ON TITANIUM DIOXIDE(110). Journal of Electron Spectroscopy and Related Phenomena, 1995. 73(1): p. 1-11.
    19. Mills, A. and S. LeHunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 108(1): p. 1-35.
    20. Dulay, M.A.F.a.M.T., Heterogeneous Photocatalysis. Chem. Rev, 1993. 93.
    21. Hurum, D.C., et al., Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B, 2003. 107(19): p. 4545-4549.
    22. Serpone, H.A.-E.a.N., Klnetlc Studies In Heterogeneous Photocatalysis. 1. Photocatalytic Degradatlon of Chlorinated Phenols in Aerated Aqueous Solutions over TIO, Supported on a Glass Matrix. J. Phys. Chem. B, 1988.
    23. DINGWANG CHEN , A.K.R., PHOTODEGRADATION KINETICS OF 4-NITROPHENOL IN TiO2 SUSPENSION. Wat. Res., 1998. 32: p. 11.
    24. Zang, Y. and R. Farnood, Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide. Applied Catalysis B: Environmental, 2005. 57(4): p. 275-282.
    25. Zhao, J.C., et al., PHOTODEGRADATION OF SURFACTANTS .11. ZETA-POTENTIAL MEASUREMENTS IN THE PHOTOCATALYTIC OXIDATION OF SURFACTANTS IN AQUEOUS TIO2 DISPERSIONS. Langmuir, 1993. 9(7): p. 1646-1650.
    26. I-Wei Huang , C.-S.H., and Brian Bush, PHOTOCATALYTIC DEGRADATION OF PCBs IN TiO 2 AQUEOUS SUSPENSIONS. Chemosphere, 1996. 32: p. 12.
    27. Zhang, F.L., et al., TiO2-assisted photodegradation of dye pollutants - II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B-Environmental, 1998. 15(1-2): p. 147-156.
    28. HAY, T.N.O.A.S.O., Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania. Environ. Sci. Technol., 1997. 31.
    29. Funda SAYILKAN, M.A.I., Hikmet SAYILKAN, and M.A.a.E.A. Yunus ONAL, Characterization of TiO2 Synthesized in Alcohol by a Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst. Turk J Chem, 2005. 29.
    30. Wojciech L. Suchanek, a.R.E.R., Hydrothermal Synthesis of Advanced Ceramic Powders. Advances in Science and Technology, 2006. 45.
    31. Zhe Ding, X.H., Gao Q. Lu, Po-Lock Yue, and Paul F. Greenfield, Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method. Langmuir, 2000. 16: p. 6.
    32. Kislyuk, V.V. and O.P. Dimitriev, Nanorods and Nanotubes for Solar Cells. Journal of Nanoscience and Nanotechnology, 2008. 8(1): p. 131-148.
    33. Zhibo Zhang, C.-C.W., Rama Zakaria, and Jackie Y. Ying, Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B, 1998. 102: p. 10871-10878.
    34. Cheng, K.-W., et al., In situ epitaxial growth of TiO[sub 2] on RuO[sub 2] nanorods with reactive sputtering. Applied Physics Letters, 2006. 88(4): p. 043115.
    35. Maggie Paulose, K.S., Sorachon Yoriya, Haripriya E. Prakasam,, Oomman K. Varghese, | Gopal K. Mor,| Thomas A. Latempa, Adriana Fitzgerald, and, and C.A. Grimes, Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 µm in Length. J. Phys. Chem. B, 2006. 110.
    36. Chen, H.S., et al., Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2011.
    37. Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
    38. Zhang, C. and H. He, A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catalysis Today, 2007. 126(3-4): p. 345-350.
    39. Choi, W.Y., A. Termin, and M.R. Hoffmann, THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS. Journal of Physical Chemistry, 1994. 98(51): p. 13669-13679.
    40. Wu, S.X., et al., Photocatalytic redox activity of doped nanocrystalline TiO2. Acta Physico-Chimica Sinica, 2004. 20(2): p. 138-143.
    41. Chen, S.-Z., et al., Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering. Catalysis Communications, 2004. 5(11): p. 677-680.
    42. Marci, G., et al., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. Journal of Physical Chemistry B, 2001. 105(5): p. 1033-1040.
    43. Ghows, N. and M.H. Entezari, Fast and easy synthesis of core-shell nanocrystal (CdS/TiO2) at low temperature by micro-emulsion under ultrasound. Ultrasonics Sonochemistry, 2011. 18(2): p. 629-634.
    44. Das, K. and S.K. De, Optical Properties of the Type-II Core-Shell TiO2@CdS Nanorods for Photovoltaic Applications. Journal of Physical Chemistry C, 2009. 113(9): p. 3494-3501.
    45. Meng, L.J., T. Ren, and C. Li, The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC. Applied Surface Science, 2010. 256(11): p. 3676-3682.
    46. Meng, L.J., et al., Sputtered Highly Ordered TiO2 Nanorod Arrays and Their Applications as the Electrode in Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2011. 11(2): p. 929-934.
    47. Tsai, C.H., et al., Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells. Organic Electronics, 2011. 12(12): p. 2003-2011.
    48. Piscopo, A., D. Robert, and J.V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds - Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B-Environmental, 2001. 35(2): p. 117-124.
    49. Wang, J., et al., Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. Journal of the American Chemical Society, 2009. 131(34): p. 12290-12297.
    50. Cong, Y., et al., Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007. 111(19): p. 6976-6982.
    51. Kitano, M., et al., Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. Journal of Physical Chemistry B, 2006. 110(50): p. 25266-25272.
    52. Zhou, S., et al., Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites. Applied Surface Science, 2012. 258(16): p. 6136-6141.
    53. Jun, T.H., K.S. Lee, and H.S. Song, Hydrophilicity of anatase TiO2/Cr-doped TiO2 thin films with different band gaps. Thin Solid Films, 2012. 520(7): p. 2609-2612.

    下載圖示 校內:2016-08-12公開
    校外:2016-08-12公開
    QR CODE