| 研究生: |
陳偉偉 Chen, Wei-Wei |
|---|---|
| 論文名稱: |
使用多路徑濾波技術之開關鍵控及頻率鍵移調變喚醒接收機 A FSK/OOK Wake-up Receiver Using N-Path Filtering Techniques |
| 指導教授: |
鄭光偉
Cheng, Kuang-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 低功率 、喚醒接收機 、開關鍵控 、頻率鍵移 、多路徑技術 、轉導電容濾波 |
| 外文關鍵詞: | low-power, WuRx, OOK, FSK, N-path technique, gm-C filter |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線感測網路與物聯網應用發展呈爆炸性成長的當下,感測節點的數量越來越多,許多新技術也油然而生。為達到高密度節點分部與良好的能量使用效率,一低功耗、小尺寸與高靈敏度之喚醒接收機期待被實現。喚醒接收機可隨時監控發射節點訊號,在收到聯絡請求時喚醒接收節點之主接收機,非聯絡狀態時主接收機則保持睡眠模式,達到節能之目的。
本論文提出一低功耗、可做開關鍵控及頻率鍵移訊號之解調,並且採用多路徑技術進行抗干擾與解調變之喚醒接收機。其中首級低雜訊放大器與堆疊式混頻器共用了電流,此設技優化了功率消耗並減輕本地振盪器的負擔。使用多路徑技術可取代掉傳統巨大、高品質因數之外部元件,並提供良好的帶通濾波效果。此外,多路徑技術也用於解調電路,搭配轉導電容濾波器來位移中心頻率,讓頻率使用更富彈性。本晶片使用90奈米互補式金屬氧化物半導體製程製造,工作於433百萬赫茲(ISM頻段)、資料傳輸率為每秒100千位元,在進入解調變電路前之增益為65 dB,預期能達到−100 dBm的靈敏度,此晶片操作在1伏特工作電壓下,消耗200微瓦。
Nowadays, there is an explosive growth of development in wireless communication applications such as IoTs (internet of things) or WSNs. More and more sensor nodes are needed, giving rise to diverse requirements and new techniques. To meet the requirements of dense deployment of sensor nodes and good energy efficiency, a low-power, small-area, and high-sensitivity wake-up receiver (WuRx) is expected to be implemented. A WuRx continuously monitors the communication requests from transmitting nodes. Only when receiving a request, the WuRx wakes the main receiver up. The main receiver remains asleep in the intervals of communication to optimize the power efficiency.
This thesis proposes a low-power, OOK/FSK wake-up receiver using N-path technique for interference immunity and demodulation. The ingenious design of the LNA and stacked mixer optimizes power consumption and alleviates the burden of local oscillator. By the use of N-path filter rather than bulky, external, high-Q devices, it can provide a high-Q band-pass response. The N-path technique is also used in demodulator and aided by the gm-C filter to shift the center frequency. Implemented in 90 nm CMOS process, the WuRx operating in 433 MHz (ISM-band) with 100-kb/s input has a conversion gain before the demodulator of 65 dB and an expected sensitivity of −100 dBm, while consuming 200 μW under a 1-V supply voltage.
[1] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, 2002.
[2] N. M. Pletcher, "Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks," Ph.D., Univ. California, Berkeley, California, U.S., 2008.
[3] J. Blanckenstein, J. Klaue, and H. Karl, "A Survey of Low-Power Transceivers and Their Applications," IEEE Circuits and Systems Magazine, vol. 15, no. 3, pp. 6-17, 2015.
[4] J. Moody et al., "A −76dBm 7.4nW wakeup radio with automatic offset compensation," in IEEE ISSCC Dig. Tech. Papers, 2018, pp. 452-454.
[5] H. Jiang et al., "A 4.5nW wake-up radio with −69dBm sensitivity," in IEEE ISSCC Dig. Tech. Papers, 2017, pp. 416-417.
[6] V. Mangal and P. R. Kinget, "A 0.42nW 434MHz -79.1dBm Wake-Up Receiver with a Time-Domain Integrator," in IEEE ISSCC Dig. Tech. Papers, 2019, pp. 438-440.
[7] B. Otis, Y. H. Chee, and J. Rabaey, "A 400μW-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks," in IEEE ISSCC Dig. Tech. Papers, 2005, pp. 396-606 Vol. 1.
[8] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, "A 350μW CMOS MSK Transmitter and 400μW OOK Super-Regenerative Receiver for Medical Implant Communications," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1248-1259, 2009.
[9] J. Bae, N. Cho, and H. Yoo, "A 490uW fully MICS compatible FSK transceiver for implantable devices," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 36-37.
[10] Y. Liu, H. Liu, and T. Lin, "A super-regenerative ASK receiver with ΔΣ pulse-width digitizer and SAR-based fast frequency calibration for MICS applications," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 38-39.
[11] J. Pandey, J. Shi, and B. Otis, "A 120μW MICS/ISM-band FSK receiver with a 44μW low-power mode based on injection-locking and 9x frequency multiplication," in IEEE ISSCC Dig. Tech. Papers, 2011, pp. 460-462.
[12] S. Drago, D. M. W. Leenaerts, F. Sebastiano, L. J. Breems, K. A. A. Makinwa, and B. Nauta, "A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes," in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 224-225.
[13] N. M. Pletcher, S. Gambini, and J. M. Rabaey, "A 2GHz 52 μW Wake-Up Receiver with -72dBm Sensitivity Using Uncertain-IF Architecture," in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 524-633.
[14] C. Salazar, A. Kaiser, A. Cathelin, and J. Rabaey, "A −97dBm-sensitivity interferer-resilient 2.4GHz wake-up receiver using dual-IF multi-N-Path architecture in 65nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 1-3.
[15] M. Darvishi, R. v. d. Zee, E. A. M. Klumperink, and B. Nauta, "Widely Tunable 4th Order Switched Gm-C Band-Pass Filter Based on N-Path Filters," IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3105-3119, 2012.
[16] L. Xiaoyong, S. Shekhar, and D. J. Allstot, "Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, 2005.
[17] C. Andrews and A. C. Molnar, "Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers," IEEE Trans. Circuits Syst. I, vol. 57, no. 12, pp. 3092-3103, 2010.
[18] C. Salazar, "Ultra-low power wake-up receivers using N-path filtering techniques," Ph.D., Univ. Lille, Lille, France, 2015.
[19] F. Belmas, F. Hameau, and J. M. Fournier, "A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, 2012.
[20] B. Razavi, RF Microelectronics, 2nd ed. 2011.
[21] C. J. Jeong, W. Qu, Y. Sun, D. Y. Yoon, S. K. Han, and S. G. Lee, "A 1.5V, 140µA CMOS ultra-low power common-gate LNA," in IEEE Radio Freq. Integr. Circuits Symp., 2011, pp. 1-4.
[22] T. C. Carusone, Analog Integrated Circuit Design, 2nd ed. 2011.
[23] M. Lont, D. Milosevic, A. H. M. v. Roermund, and G. Dolmans, "Ultra-low power FSK Wake-up Receiver front-end for body area networks," in IEEE Radio Freq. Integr. Circuits Symp., 2011, pp. 1-4.
[24] B. W. Cook, A. Berny, A. Molnar, S. Lanzisera, and K. S. J. Pister, "Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2757-2766, 2006.
[25] A. C. Heiberg, T. W. Brown, T. S. Fiez, and K. Mayaram, "A 250 mV, 352 μW GPS Receiver RF Front-End in 130 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 938-949, 2011.
[26] M. Lont, D. Milosevic, G. Dolmans, and A. H. M. van Roermund, "Mixer-First FSK Receiver With Automatic Frequency Control for Body Area Networks," IEEE Trans. Circuits Syst. I, vol. 60, no. 8, pp. 2051-2063, 2013.
[27] A. S. Rekhi and A. Arbabian, "A 14.5mm2 8nW −59.7dBm-sensitivity ultrasonic wake-up receiver for power-, area-, and interference-constrained applications," in IEEE ISSCC Dig. Tech. Papers, 2018, pp. 454-456.
[28] X. Huang, A. Ba, P. Harpe, G. Dolmans, H. D. Groot, and J. Long, "A 915MHz 120μW-RX/900μW-TX envelope-detection transceiver with 20dB in-band interference tolerance," in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 454-456.
[29] T. Abe et al., "An ultra-low-power 2-step wake-up receiver for IEEE 802.15.4g wireless sensor networks," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
[30] C. Bryant and H. Sjöland, "A 2.45GHz, 50μW wake-up receiver front-end with −88dBm sensitivity and 250kbps data rate," in Proc. IEEE 40th Eur. Solid-State Circuits Conf.(ESSCIRC), 2014, pp. 235-238.