簡易檢索 / 詳目顯示

研究生: 陳偉偉
Chen, Wei-Wei
論文名稱: 使用多路徑濾波技術之開關鍵控及頻率鍵移調變喚醒接收機
A FSK/OOK Wake-up Receiver Using N-Path Filtering Techniques
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 90
中文關鍵詞: 低功率喚醒接收機開關鍵控頻率鍵移多路徑技術轉導電容濾波
外文關鍵詞: low-power, WuRx, OOK, FSK, N-path technique, gm-C filter
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線感測網路與物聯網應用發展呈爆炸性成長的當下,感測節點的數量越來越多,許多新技術也油然而生。為達到高密度節點分部與良好的能量使用效率,一低功耗、小尺寸與高靈敏度之喚醒接收機期待被實現。喚醒接收機可隨時監控發射節點訊號,在收到聯絡請求時喚醒接收節點之主接收機,非聯絡狀態時主接收機則保持睡眠模式,達到節能之目的。
    本論文提出一低功耗、可做開關鍵控及頻率鍵移訊號之解調,並且採用多路徑技術進行抗干擾與解調變之喚醒接收機。其中首級低雜訊放大器與堆疊式混頻器共用了電流,此設技優化了功率消耗並減輕本地振盪器的負擔。使用多路徑技術可取代掉傳統巨大、高品質因數之外部元件,並提供良好的帶通濾波效果。此外,多路徑技術也用於解調電路,搭配轉導電容濾波器來位移中心頻率,讓頻率使用更富彈性。本晶片使用90奈米互補式金屬氧化物半導體製程製造,工作於433百萬赫茲(ISM頻段)、資料傳輸率為每秒100千位元,在進入解調變電路前之增益為65 dB,預期能達到−100 dBm的靈敏度,此晶片操作在1伏特工作電壓下,消耗200微瓦。

    Nowadays, there is an explosive growth of development in wireless communication applications such as IoTs (internet of things) or WSNs. More and more sensor nodes are needed, giving rise to diverse requirements and new techniques. To meet the requirements of dense deployment of sensor nodes and good energy efficiency, a low-power, small-area, and high-sensitivity wake-up receiver (WuRx) is expected to be implemented. A WuRx continuously monitors the communication requests from transmitting nodes. Only when receiving a request, the WuRx wakes the main receiver up. The main receiver remains asleep in the intervals of communication to optimize the power efficiency.
    This thesis proposes a low-power, OOK/FSK wake-up receiver using N-path technique for interference immunity and demodulation. The ingenious design of the LNA and stacked mixer optimizes power consumption and alleviates the burden of local oscillator. By the use of N-path filter rather than bulky, external, high-Q devices, it can provide a high-Q band-pass response. The N-path technique is also used in demodulator and aided by the gm-C filter to shift the center frequency. Implemented in 90 nm CMOS process, the WuRx operating in 433 MHz (ISM-band) with 100-kb/s input has a conversion gain before the demodulator of 65 dB and an expected sensitivity of −100 dBm, while consuming 200 μW under a 1-V supply voltage.

    List of Figures X List of Tables XIV 1. Introduction 1 1.1. WSN Implementation Requirements 1 1.2. Duty-Cycle Control in Sensor Networks 2 1.3. Wake-up Receiver Design Considerations 5 1.3.1. Power Consumption and Data Rate 5 1.3.2. Sensitivity 5 1.3.3. Functional Specifications 6 1.4. Thesis Organization 8 2. Introduction of Wake-up Receiver System 9 2.1. State-of-The-Art Wake-up Receivers 9 2.1.1. Envelope Detection Architecture 9 2.1.2. Super-Regenerative Architecture 10 2.1.3. Low-IF Architecture 11 2.1.4. Uncertain-IF Architecture 12 2.1.5. N-Path Filter Based Architecture 13 2.2. Conclusions 14 3. Proposed N-Path Filter Based WuRx 15 3.1. WuRx Architecture 15 3.1.1. Frequency Plan 19 3.2. N-Path Passive Filter 20 3.2.1. Paralleled 4-Path Passive Filter 21 3.2.1.1. 4-Path Filter Used in IF1 Band 27 3.2.1.2. 4-Path Filter Used in Demodulator 30 3.2.2. gm-C Frequency Shift Technique 31 3.2.2.1. gm-C Technique Applied in N-Path Filter1 (IF1 band) 33 3.2.2.2. gm-C Technique Applied in N-Path Filter3 (Demodulator) 34 3.3. WuRx Front-End Sub-Circuits 35 3.3.1. Differential gm-boost CG LNA with Current-Reuse Stacked Mixer 35 3.3.1.1. LNA Structure Selection 47 3.3.2. IF-Amplification Chain 50 3.3.2.1. Variable-Gain Amplifier 50 3.3.2.2. IF2 Amplifier 52 3.3.3. Dual-Mode Demodulator 53 3.3.3.1. Envelope Detector 53 3.3.3.2. Pre-Amplifier 58 3.3.4. Local Oscillator and Clock Generator 63 3.3.4.1. 4-Stage Ring Oscillator 63 3.3.4.2. Frequency Divider and Clock Generator 66 3.4. Simulations of The Proposed WuRx System 70 3.4.1. Layout Implementation 70 3.4.2. Simulation Results 71 4. Measurements 78 4.1. Experimental Setup 78 4.2. Measurement Results 81 5. Conclusions and Future Works 85 5.1. Conclusions 85 5.2. Future Works 85 5.2.1. Circuit Implementation 85 5.2.2. LO Generation 86 5.2.3. Synchronous Clock 86 5.2.4. QPSK Demodulation 86 Bibliography 88

    [1] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, 2002.
    [2] N. M. Pletcher, "Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks," Ph.D., Univ. California, Berkeley, California, U.S., 2008.
    [3] J. Blanckenstein, J. Klaue, and H. Karl, "A Survey of Low-Power Transceivers and Their Applications," IEEE Circuits and Systems Magazine, vol. 15, no. 3, pp. 6-17, 2015.
    [4] J. Moody et al., "A −76dBm 7.4nW wakeup radio with automatic offset compensation," in IEEE ISSCC Dig. Tech. Papers, 2018, pp. 452-454.
    [5] H. Jiang et al., "A 4.5nW wake-up radio with −69dBm sensitivity," in IEEE ISSCC Dig. Tech. Papers, 2017, pp. 416-417.
    [6] V. Mangal and P. R. Kinget, "A 0.42nW 434MHz -79.1dBm Wake-Up Receiver with a Time-Domain Integrator," in IEEE ISSCC Dig. Tech. Papers, 2019, pp. 438-440.
    [7] B. Otis, Y. H. Chee, and J. Rabaey, "A 400μW-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks," in IEEE ISSCC Dig. Tech. Papers, 2005, pp. 396-606 Vol. 1.
    [8] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, "A 350μW CMOS MSK Transmitter and 400μW OOK Super-Regenerative Receiver for Medical Implant Communications," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1248-1259, 2009.
    [9] J. Bae, N. Cho, and H. Yoo, "A 490uW fully MICS compatible FSK transceiver for implantable devices," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 36-37.
    [10] Y. Liu, H. Liu, and T. Lin, "A super-regenerative ASK receiver with ΔΣ pulse-width digitizer and SAR-based fast frequency calibration for MICS applications," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 38-39.
    [11] J. Pandey, J. Shi, and B. Otis, "A 120μW MICS/ISM-band FSK receiver with a 44μW low-power mode based on injection-locking and 9x frequency multiplication," in IEEE ISSCC Dig. Tech. Papers, 2011, pp. 460-462.
    [12] S. Drago, D. M. W. Leenaerts, F. Sebastiano, L. J. Breems, K. A. A. Makinwa, and B. Nauta, "A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes," in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 224-225.
    [13] N. M. Pletcher, S. Gambini, and J. M. Rabaey, "A 2GHz 52 μW Wake-Up Receiver with -72dBm Sensitivity Using Uncertain-IF Architecture," in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 524-633.
    [14] C. Salazar, A. Kaiser, A. Cathelin, and J. Rabaey, "A −97dBm-sensitivity interferer-resilient 2.4GHz wake-up receiver using dual-IF multi-N-Path architecture in 65nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 1-3.
    [15] M. Darvishi, R. v. d. Zee, E. A. M. Klumperink, and B. Nauta, "Widely Tunable 4th Order Switched Gm-C Band-Pass Filter Based on N-Path Filters," IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3105-3119, 2012.
    [16] L. Xiaoyong, S. Shekhar, and D. J. Allstot, "Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, 2005.
    [17] C. Andrews and A. C. Molnar, "Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers," IEEE Trans. Circuits Syst. I, vol. 57, no. 12, pp. 3092-3103, 2010.
    [18] C. Salazar, "Ultra-low power wake-up receivers using N-path filtering techniques," Ph.D., Univ. Lille, Lille, France, 2015.
    [19] F. Belmas, F. Hameau, and J. M. Fournier, "A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, 2012.
    [20] B. Razavi, RF Microelectronics, 2nd ed. 2011.
    [21] C. J. Jeong, W. Qu, Y. Sun, D. Y. Yoon, S. K. Han, and S. G. Lee, "A 1.5V, 140µA CMOS ultra-low power common-gate LNA," in IEEE Radio Freq. Integr. Circuits Symp., 2011, pp. 1-4.
    [22] T. C. Carusone, Analog Integrated Circuit Design, 2nd ed. 2011.
    [23] M. Lont, D. Milosevic, A. H. M. v. Roermund, and G. Dolmans, "Ultra-low power FSK Wake-up Receiver front-end for body area networks," in IEEE Radio Freq. Integr. Circuits Symp., 2011, pp. 1-4.
    [24] B. W. Cook, A. Berny, A. Molnar, S. Lanzisera, and K. S. J. Pister, "Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2757-2766, 2006.
    [25] A. C. Heiberg, T. W. Brown, T. S. Fiez, and K. Mayaram, "A 250 mV, 352 μW GPS Receiver RF Front-End in 130 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 938-949, 2011.
    [26] M. Lont, D. Milosevic, G. Dolmans, and A. H. M. van Roermund, "Mixer-First FSK Receiver With Automatic Frequency Control for Body Area Networks," IEEE Trans. Circuits Syst. I, vol. 60, no. 8, pp. 2051-2063, 2013.
    [27] A. S. Rekhi and A. Arbabian, "A 14.5mm2 8nW −59.7dBm-sensitivity ultrasonic wake-up receiver for power-, area-, and interference-constrained applications," in IEEE ISSCC Dig. Tech. Papers, 2018, pp. 454-456.
    [28] X. Huang, A. Ba, P. Harpe, G. Dolmans, H. D. Groot, and J. Long, "A 915MHz 120μW-RX/900μW-TX envelope-detection transceiver with 20dB in-band interference tolerance," in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 454-456.
    [29] T. Abe et al., "An ultra-low-power 2-step wake-up receiver for IEEE 802.15.4g wireless sensor networks," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
    [30] C. Bryant and H. Sjöland, "A 2.45GHz, 50μW wake-up receiver front-end with −88dBm sensitivity and 250kbps data rate," in Proc. IEEE 40th Eur. Solid-State Circuits Conf.(ESSCIRC), 2014, pp. 235-238.

    下載圖示 校內:2024-07-23公開
    校外:2024-07-23公開
    QR CODE