簡易檢索 / 詳目顯示

研究生: 洪易昇
Hong, Yi-Shen
論文名稱: 初始暴脹期間量子誘發之 k 本質模型的影響
Effects of the quantum-induced k-essence models during primordial inflation
指導教授: 苗舜培
Miao, Shun-Pei
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 21
中文關鍵詞: 初始暴脹理論等效場理論K-本質模型
外文關鍵詞: Primordial inflation, Effective Field Theory, K-essence Model
相關次數: 點閱:92下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 純量場驅使的暴漲理論正遭遇到嚴重的微調問題。其中一個問題來自於有效率的再加熱 (reheating) 需要暴漲子與物質的耦合。在一般的耦合方式下物質的量子漲落產生了於暴漲子位勢上的科爾曼-溫伯格修正項 (Coleman-Weinberg corrections)。對於一般的宇宙幾何而言這些修正項暨非受普朗克壓制的 (Planck-suppressed),亦非度
    規的局域泛函,以至於無法完全被消去。先前的研究表示,在德西特背景幾何 (deSitter background) 中這些位勢修正項為暴漲子與哈伯參數比率的複雜函數。然而其結果並不令人滿意。在這篇論文中我們考慮將暴漲子的導數部分與物質耦合。這導致了 k-本質 (k-essence) 模型,其中的修正項與非導數耦合情況下的修正項有著相似的
    形式。其影響對費米物質而言傾向於延長暴漲的持續期間,而對純量物質而言則縮短了暴漲的持續期間。

    Scalar-driven inflation suffers from severe fine-tuning problems. One problem arises from the fact that efficient reheating requires the inflaton-matter coupling. Quantum fluctuations of matter induce Coleman-Weinberg corrections to the inflaton potential for typical couplings. For a general cosmological geometry these corrections are neither Planck-suppressed nor local functional of metric that can not be fully subtracted. Previous studies showed that the potential corrections depend on complicated functions of ratio of the inflaton to the Hubble parameter on de Sitter background. However the consequence is not satisfying. In this
    thesis we consider coupling the derivative part of inflaton to matter instead. It induces k-essence models with the corrections in the similar forms to the non-derivative coupling case.
    The effects are that the inflation duration tends to be prolonged for fermion while it is shortened for scalars

    摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Figures v Chapter 1. Introduction 1 Chapter 2. Effective Lagrangian Densities on de Sitter 3 Contribution from Fermions 3 Contribution from Scalars 5 Chapter 3. Modified Evolution Equations 9 K-essence in Friedmann Universe 9 The Modified Evolution Equations 10 Chapter 4. The Fate of the m^2φ^2 Model 12 Corrections from Fermions 13 Corrections from Other Scalars 15 Chapter 5. Conclusion 18 References 19

    [1] R Brout, F Englert, and E Gunzig. The creation of the universe as a quantum phenomenon. Annals of Physics, 115(1):78–106, 1978.
    [2] Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B, 91:99–102, 1980.
    [3] D. Kazanas. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J., 241:L59–L63, oct 1980.
    [4] Katsuhiko Sato. First-order phase transition of a vacuum and the expansion of the Universe. Monthly Notices of the Royal Astronomical Society, 195(3):467–479, 07 1981.
    [5] Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23:347–356, Jan 1981.
    [6] P. A. R. Ade et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys., 594:A20, 2016, 1502.02114.
    [7] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020, 1807.06209. [Erratum: Astron.Astrophys. 652, C4 (2021)].
    [8] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. Towards the theory of reheating after inflation. Phys. Rev. D, 56:3258–3295, 1997, hep-ph/9704452.
    [9] S. P. Miao and R. P. Woodard. Fine Tuning May Not Be Enough. JCAP, 09:022, 2015, 1506.07306.
    [10] Dalia S. Goldwirth and Tsvi Piran. Inhomogeneity and the onset of inflation. Phys. Rev. Lett., 64:2852–2855, Jun 1990.
    [11] Dalia S Goldwirth and Tsvi Piran. Initial conditions for inflation. Physics Reports, 214(4):223–292, 1992.
    [12] Tanmay Vachaspati and Mark Trodden. Causality and cosmic inflation. Phys. Rev. D, 61:023502, 1999, gr-qc/9811037.
    [13] A.D. Linde. A new inflationary universe scenario: A possible solution of the horizon, flatness, omogeneity, isotropy and primordial monopole problems. Physics Letters B, 108(6):389–393, 1982.
    [14] Andreas Albrecht and Paul J. Steinhardt. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett., 48:1220–1223, Apr 1982.
    [15] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger. Theory of cosmological perturbations. Physics Reports, 215(5-6):203–333, June 1992.
    [16] Rouzbeh Allahverdi, Robert Brandenberger, Francis-Yan Cyr-Racine, and Anupam Mazumdar. Reheating in Inflationary Cosmology: Theory and Applications. Ann. Rev. Nucl. Part. Sci., 60:27–51, 2010, 1001.2600.
    [17] Adam G. Riess et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 116:1009–1038, 1998, astro-ph/9805201.
    [18] S. Perlmutter et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J., 517:565–586, 1999, astro-ph/9812133.
    [19] Yun Wang and Pia Mukherjee. Robust dark energy constraints from supernovae, galaxy clustering, and three-year wilkinson microwave anisotropy probe observations. Astrophys. J., 650:1–6, 2006, astro-ph/0604051.
    [20] Ujjaini Alam, Varun Sahni, and Alexei A. Starobinsky. Exploring the Properties of Dark Energy Using Type Ia Supernovae and Other Datasets. JCAP, 02:011, 2007, astroph/0612381.
    [21] Sidney Coleman and Erick Weinberg. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D, 7:1888–1910, Mar 1973.
    [22] Daniel R. Green. Reheating Closed String Inflation. Phys. Rev. D, 76:103504, 2007, 0707.3832.
    [23] H. Liao, J. S. P. Miao, and R. P. Woodard. Cosmological Coleman-Weinberg Potentials and Inflation. Phys. Rev. D, 99(10):103522, 2019, 1806.02533.
    [24] S. P. Miao, S. Park, and R. P. Woodard. Ricci Subtraction for Cosmological Coleman-Weinberg Potentials. Phys. Rev. D, 100(10):103503, 2019, 1908.05558.
    [25] C. Armendariz-Picon, T. Damour, and Viatcheslav F. Mukhanov. k - inflation. Phys. Lett. B, 458:209–218, 1999, hep-th/9904075.
    [26] Jaume Garriga and Viatcheslav F. Mukhanov. Perturbations in k-inflation. Phys. Lett. B, 458:219–225, 1999, hep-th/9904176.
    [27] C. Armendariz-Picon, Viatcheslav F. Mukhanov, and Paul J. Steinhardt. Essentials of k essence. Phys. Rev. D, 63:103510, 2001, astro-ph/0006373.
    [28] C. Armendariz-Picon, Viatcheslav F. Mukhanov, and Paul J. Steinhardt. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett., 85:4438–4441, 2000, astro-ph/0004134.
    [29] Takeshi Chiba, Takahiro Okabe, and Masahide Yamaguchi. Kinetically driven quintessence. Phys. Rev. D, 62:023511, 2000, astro-ph/9912463.
    [30] C. Armendariz-Picon and Eugene A. Lim. Haloes of k-essence. JCAP, 08:007, 2005, astro-ph/0505207.
    [31] Robert J. Scherrer. Purely kinetic k-essence as unified dark matter. Phys. Rev. Lett., 93:011301, 2004, astro-ph/0402316.
    [32] P. Candelas and D. J. Raine. General-relativistic quantum field theory: An exactly soluble model. Phys. Rev. D, 12:965–974, Aug 1975.
    [33] Shun-Pei Miao and R. P. Woodard. Leading log solution for inflationary Yukawa. Phys. Rev. D, 74:044019, 2006, gr-qc/0602110.
    [34] S. P. Miao, N. C. Tsamis, and R. P. Woodard. The Graviton Propagator in de Donder Gauge on de Sitter Background. J. Math. Phys., 52:122301, 2011, 1106.0925.
    [35] Bruce Allen and Antoine Folacci. The Massless Minimally Coupled Scalar Field in De Sitter Space. Phys. Rev. D, 35:3771, 1987.
    [36] Richard S. Palais. The principle of symmetric criticality. Communications in Mathematical Physics, 69(1):19–30, oct 1979.
    [37] C. G. Torre. Symmetric Criticality in Classical Field Theory. AIP Conf. Proc., 1360(1):63–74, 2011, 1011.3429.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE