| 研究生: |
李雅鈺 Li, Ya-Yu |
|---|---|
| 論文名稱: |
含膽固醇之陰陽離子液胞穩定性及包覆行為的研究 Stability and Encapsulation Behavior of Catanionic Vesicles with Addition of Cholesterol |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 陰陽離子界面活性徑 、陰陽離子液胞 、膽固醇 、穩定性 、包覆 、離子對雙親分子 |
| 外文關鍵詞: | ion pair amphiphile, catanionic surfactant, stability, encapsulation, catanionic vesicle, cholesterol |
| 相關次數: | 點閱:121 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用陰離子型界面活性劑 sodium dodecylsulfate(SDS),和不同碳鏈長度的陽離子型界面活性劑dodecyltrimethylammonium bromide(DTMAB)、tetradecyltrimethylammonium bromide(TTMAB)或hexadecyltrimethylammonium bromide(HTMAB),分別形成DTMA.DS、TTMA.DS和HTMA.DS三種離子對雙親分子(ion pair amphiphile, IPA),並藉由製膜、超音波震盪和擠壓等程序,製備出陰陽離子液胞(catanionic vesicles),並探討添加不同比例的膽固醇的添加對於液胞穩定性所造成影響。此外,亦嘗試針對穩定性佳的陰陽離子液胞系統進行包覆5(6)-carboxyfluorescein(CF)的實驗,以了解陰陽離子液胞的包覆行為。
實驗結果顯示添加膽固醇僅對DTMA.DS液胞的穩定性,具有明顯的提升作用,對TTMA.DS及HTMA.DS的系統則影響不大。就DTMA.DS系統而言,膽固醇比例須大於17 mol%時才可改善液胞的穩定性,且膽固醇添加量越高時,液胞的穩定性越佳。在利用Triton X-100進行液胞的破壞時,則發現含有高比例膽固醇的液胞較不易被破壞。此外液胞的包覆實驗顯示,液胞包覆體積除了和液胞粒徑大小有關外,和液胞的穩定性亦有關,而使用DTMA.DS來製備液胞時,包覆達成率可達80%以上。
In this study, three ion pair amphiphiles (IPAs) were made of an anionic surfactant, sodium dodecylsulfate (SDS), and cationic surfactants, dodecyltrimethylammonium bromide (DTMAB), tetradecyltrimethyl- ammonium bromide (TTMAB), and hexadecyltrimethylammonium bromide (HTMAB), with various hydrocarbon chain lengths. Catanionic vesicles were then prepared from IPAs with the processes of film preparation, sonication, and extrusion, and the influence of the added cholesterol on the stability of the vesicles was investigated. In addition, the catanionic vesicles with reasonable stability were used to encapsulate 5(6)-carboxyfluorescein in order to understand the encapsulation behavior of the vesicles.
The experimental results indicated that the addition of cholesterol can significantly improve the stability of DTMA.DS vesicles, and show insignificant influence on the stability of TTMA.DS or HTMA.DS vesicles. For DTMA.DS vesicles, the enhanced stability could only be found with a cholesterol content higher than 17 mol%, and the stability increased with cholesterol content. It was also observed that with a higher molar ratio of cholesterol, the vesicles became more difficult to be disrupted by Triton X-100. Moreover, the results obtained from encapsulation experiments suggested that the apparent captured volume of the vesicles was related to not only vesicle size but also vesicle stability. For DTMA.DS vesicles, the encapsulation achievement ratio could be as high as 80%.
Bhattacharya, S., De, S. and Subramanian, M. “ Synthesis and vesicle formation form hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design,” J. Org. Chem 63, 7640,1998.
Bhattacharya, S. and De, S., “Vesicle formation from dimeric ion-paired amphiphiles. Control over vesicular thermotropic and ion-transport properties as a function of intra-amphiphilic headgroup separation,” Langmuir 15, 3400, 1999.
Bhattatcharya, S. and Haldar, S., “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage,”Biochim. Biophys. Acta 1467, 39, 2000.
Bucak, S., Robinson, B. H. and Fontana, A., “Kinetics of induced vesicle breakdown for cationic and catanionic systems,”Langmuir 18, 8288, 2002.
Caillet, C., Hebrant, M. and Tondre, C., “Sodium octyl sulfate/ cetyltrimethylammonium bromide catanionic vesicles: Aggregate composition and probe encapsulation,” Langmuir 16, 9099, 2000.
Caria, A. and Khan, A., “Phase behavior of catanionic surfactant mixtures: sodium bis(2-ethylhexyl)sulfosuccinate — didodecyldimethylammonium bromide — water system,” Langmuir 12, 6282, 1996.
Chien, C. L., Yeh, S. J., Yang, Y. M., Chang, C. H. and Maa. J. R. “Formation and encapsulation of catanionic vesicles,” J. Chin. Colloid & Interface Soc. 24, 31, 2002.
Chung, M. H. and Chung, Y. C., “Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Coll. Surf. B 24, 111, 2002.
Chung, M. H., Chung, Y. C. and Chun, B. C. “Highly pH-sensitive ion pair amphiphile vesicle,” Coll. Surf. B 29, 75, 2003.
Chung, M. H., Park, M. J. Chun, B. C. and Chung, Y. C., “Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Coll. Surf. B 28, 83, 2003.
Chung, Y. C. and Lee, H. J., “Ion-sensing property of an ion pair amphiphile,” Bull. Korean Chem. Soc. 20, 16, 1999.
Chung, Y. C., Lee, H. J. and Park, J. Y., “Bilayer Properties of the multiple-chain ion pair amphiphiles,” Bull. Korean Chem. Soc. 19, 1249, 1998.
Chung, Y. C. and Regen, S. L., “Comparison of barrier properties of bilayers derived from an ion-paired amphiphile with those of a phosphatidylcholine analog,” Langmuir 8, 2843, 1992.
Chung, Y. C. and Regen, S. L., “Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants,” Langmuir 9, 1937, 1993.
Cullis, P. R., Hope, M. J., Bally, M. B., Madden, T. D., Mayer, L. D. and Janoff, A. S., “Liposomes as pharmaceuticals,” in Liposomes from Biophysics to Therapeutics, M. J. Ostro, Ed., New York, NY: Marcel Dekker, 1987.
Domingo, J.C., Rosell, F., Mora, M. and De Madariaga, M.A. “Importance of purification grade of 5(6)-carboxyfluorescein on the stability and permeability properties of N-acylphosphatidylethanolamine liposomes,” Biochemical Society Trasactions 17, 997, 1989.
Engelman, D. M. and Rothman, J. E., “The planar organization of lecithin-cholesterol bilayers,” J. Biol. Chem. 247, 3694, 1972.
Fischer, A., Hebrant, M. and Tondre, C., “Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/ water system,” J. Colloid and Interface Sci. 248, 1, 2002.
Fukuda, H., Kawata, K. and Okuda, H., “Bilayer-forming ion-pair amphiphiles from single-chain surfactants,” J. Am. Chem. Soc. 112, 1635, 1990.
Fuller, G. M. and Shield, D.,“Molecular Basis of Medical Cell Biology,” McGraw-Hill, New York, 1998.
Hargreaves, W. R. and Deamer, D. W., “Liposomes from ionic, single-chain amphiphiles,” Biochemistry 17, 3759, 1978.
Hirano,K. and Fukuda, H., “Polymerizable ion-paired amphiphiles,” Langmuir 7, 1045, 1991.
Huang, J. B. and Zhao, G. X., “Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant,” Colloid Polym. Sci. 273, 156, 1995.
Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” J. Chem. Soc. Faraday Trans. 72, 1525, 1976.
Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. M., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science 245, 1371, 1989.
Kondo, Y., Uchiyama, H., Yoshino, N., Nishiyama, K. and Abe, M., “Spontaneous vesicles formation from aqueous solutions of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures,” Langmuir 11, 2380, 1995.
Lasic, D. D. “Liposomes: From Physicals to applications,” Elsevier, New York, 1993.
Lelkes, P. I. “Methodological aspects dealing with stability measurements of liposomes in vitro using the carboxyfluorescein-assay,” in Liposome Technology: Targeted Drug Delivery and Biological Interaction, G. Gregoriadis, Ed., CRC, Boca Raton, 1984.
Lòpez, O., De La Maza, A. Coderch, L., Lòpez-Iglesias, C., Wehrli, E. and Parra, J. L., “Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100,” FEBS Letters 426, 314, 1998.
McMullen, T. P. W., Lewis, R. N. A. H. and McElhaney, R. N., “Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines,” Biochemistry 32, 516, 1993.
Memoli, A., Annesini, M. C. and Petralito, S., “Surfactant-induced leakage from liposomes: a comparison among different lecithin vesicles,” International Journal of Pharmaceutics 184, 227, 1999.
Mener, F. M., Binder, W. H. and Keiper, J. S. “Cationic surfactant with counterions of glucuronate glycosides,” Langmuir 13,3247, 1997.
New, R. R. C., “Liposome: a practical approach,” Oxford University Press, New York, 1990.
Paternostre, M.T., Roux, M. and Rigaud, J.L., “Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use detergents. 1.Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate,” Biochemistry 27, 2668, 1988.
Rhoden, V. and Goldin, S. M., “Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis,” Biochemistry 18, 4173, 1979.
Robinson, B. H. and Rogerson, M., “Vesicles,” in Handbook of Applied Surface and Colloid Chemistry, K. Holmberg, Ed., John Wiley & Sons, New York, 2001.
Sakai, H., Matsumura, A., Yokoyama, S., Saji, T. and Abe, M., “Photochemical switching of vesicle formation using an azobenzene-modified surfactant,” J. Phys. Chem. B 103, 10737, 1999.Salkar, R. A., Mukesh, D., Samant, S. D. and Nabigar, C., “Mechanism of micelle to vesicle transition in cationic-anionic surfactant mixtures,” Langmuir 14, 3778, 1998.
Simons, K., Helentus, A. and Garoff. H., “Solubilization of the membrane proteins from semliki forest virus with Triton X-100,” J. Mol. Biol. 80, 119, 1973
Socaciu, C., Jessel, R. and Diehl, H. A., “Competitive carotenoid and cholesterol incorporation into liposomes: effets on membrane phase transition, fluidity, polarity and anisotropy,” Chemistry and Physics of Lipids 106, 79, 2000.
Tondre, C. and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Adv. Colloid Interface Sci. 93, 115, 2001.
Weinstein, J. N., Ralston, E., Leserman, L. D., Klausner, R. D., Dragsten, P., Henkart, P. and Blumenthal., R., “Self-quenching of carboxyfluorescein fluorescence: uses in studying liposome stability and liposome-cell interaction,” in Liposome Technology: Targeted Drug Delivery and Biological Interaction, G. Gregoriadis, Ed., CRC, Boca Raton, 1984.
Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R. and Hagins, W. A., “Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker,” Science 195, 489, 1977.
Yuet, P. K. and Blankschtein, D., “Effect of surfactant tail-length asymmetry on the formation of mixed surfactant vesicles,” Langmuir 12, 3819, 1996.
Zhao, G. X. and Yu, W. L., “Vesicles from mixed sodium 10-undecenoatedecytrimethylammonium bromide solution,” J. Colloid Interface Sci. 173, 159, 1995.
王藹君, “醫藥用微脂粒之技術現況與展望, ” 化工資訊, 12, 67, 1998.
林冠豪, “帶電的陰陽離子液胞之製備及其物理穩定性之研究,” 國立成功大學化學工程學系碩士論文, 2004.
徐立銘, “陰陽離子液胞包覆行微脂探討,” 國立成功大學化學工程學系碩士論文, 2002.
葉紹任, “共溶劑對陰陽離子液胞穩定性的影響,” 國立成功大學化學工程學系碩士論文, 2003.
歐陽鐘燦, 劉寄星 “從肥皂泡到液晶生物膜,” 牛頓出版公司, 1995.