| 研究生: |
程顯泰 Cheng, Hsien-Tai |
|---|---|
| 論文名稱: |
電漿子奈米晶體之光化學應用: 生成觸媒用之非均質奈米晶體 Photochemical Applications of Plasmonic Nanocrystals: Formation Heterogeneous Nanocrystals for Catalysts |
| 指導教授: |
許蘇文
Hsu, Su-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 非均質奈米晶體 、電漿子誘導電磁場 、觸媒 、光伏打元件 |
| 外文關鍵詞: | heterogeneous plasmonic nanocrystals, plasmon-induced electromagnetic field, catalysts |
| 相關次數: | 點閱:97 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
受惠於奈米晶體特殊的光學、電學與化學反應性,使奈米晶體在各種應用上極具潛力,例如奈米晶體的電子於光照下產生之極化現象,亦稱局部表面電漿子共振 (localized surface plasmon resonance, LSPR)並且於奈米晶體表面產生強的電磁場。由於電子於共振情況下能獲得能量而形成”熱電子” ,這些熱電子被廣泛用於光化學領域。由於這些特殊的奈米晶體性質,以下將探討奈米晶體於三個不同應用領域之表現:。
第一部份,我們利用晶種介導與電漿子介導法於奈米晶體模板上形成高度異相之反應環境,進而合成具有可控制形貌與組成之雙金屬和半導體-金屬奈米晶體。有別於傳統晶種介導合成法以保護劑調控反應環境,此法因利用電漿子介導改變奈米晶體表面電磁場分佈與調整奈米晶體於高分基質之位置來改變晶種暴露於反應溶液之面積,使奈米晶體周圍具高度異向性反應環境。本研究藉由此高度異向性反應環境可以成功合成出具有特殊結構之非均質雙成分之奈米晶體,如花邊狀、頂角具凸出結構之Au-Ag合金奈米晶體及花瓣狀Ag2S-Ag奈米晶體。這種新的合成方法有望合成各種具有良好形貌和合成多組分奈米晶體達到客製化的性能已於各種潛在應用如催化、光伏打元件、傳感器、醫學成像、光熱治療等。
第二部份,以上述於高分子基質上所合成的非均質奈米晶體作為4-硝基苯酚 (4-nitrophenol, 4-NP )之還原觸媒。結果顯示(1)以埋入高分子基質的非均質奈米晶體做非勻相催化(heterogeneous catalysis)反應,可提高再使用之穩定性; (2) 非均質奈米晶體的觸媒活性與非均質材料各成分間的協同效應有關,此效應可透過調控非均質奈米晶體的組成分及形貌來調整。
第三部份,電漿子奈米晶體藉由逐層堆疊法導入光伏打元件中作為主動層。逐層沉積法提供一快速且簡便的方法製備光伏打元件。以電漿子奈米晶體作為主動層提供電子,可透過熱電子注入(hot electron injection)及電漿子共振近場增強效應 (LSPR near-field enhancement effect)來增強光伏打元件之效能,。其結果顯示以電漿子奈米晶體形成之光伏打元件之效能與(1)電漿子晶體之組成與形狀與(2)激發光強度與波長有關。
Nanocrystals are promising materials with great potential for various applications because of their special optical, electrical, and catalyst properties. For example, localized surface plasmon resonances (LSPRs) occur on the plasmon nanocrystal which results from the phenomenon of electron polarization around the nanocrystals under irradiation. The phenomenon of polarization leads to a strong electromagnetic field around the plasmon nanocrystals. Due to these oscillating electrons receiving energy from irradiation and generating high-energy “hot electrons”, these nanocrystals are widely used in many photochemical fields. Based on these unique properties as mentioned previously, this study focuses on the performance of nanocrystals in various applications as follows:
In the first part, we integrated the seed-mediated and plasmon-mediated photochemistry methods for fabricating bimetallic and semiconductor-metal nanocrystals with controllable morphology and composition of the nanocrystal resulting from the highly anisotropic reaction environment around the nanocrystal. Different from the traditional methods of using the protecting agent to control the reaction environment, the highly anisotropic reaction environment around template nanocrystals is caused by the changes of the electromagnetic fields distribution around them under plasmon-induced effect and the exposure area in the reaction solution, which can be adjusted by controlling the position of nanocrystals in the polymer matrix. Here, the highly heterogenous bi-component nanocrystals, such as edge-flower like Au-Ag nanocrystals, pump-corner half-cage Au-Ag nanocrystals, and flower-like Ag2S-Ag nanocrystals, can be successfully fabricated in the highly anisotropic reaction environment formed around the template nanocrystals. This new synthetic method should be able to be used to fabricate various multicomponent nanocrystals with desirable functions for potential applications, such as photocatalysts, chemical /biosensors, and biomedicine et.al.
Secondly, the as-made heterogeneous nanocrystals on the polymer matrix are used as the catalysts for the reduction of 4-nitrophenol(4-NP). The results show that: (1) heterogeneous nanocrystals on polymer matrix as heterogeneous catalysts can enhance the stability of reuse ; (2)the reactivity of heterogeneous nanocrystals as catalysts depends on the synergistic effect between the components on nanocrystals, which can be adjusted by changing the composition and morphology of nanocrystals. Furthermore, these heterogeneous nanocrystals can be developed into a photocatalyst due to their LSPR properties.
1. Kreibig, U.; Vollmer, M., Optical properties of metal clusters. Springer Science & Business Media: 2013; Vol. 25.
2. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B 2003, 107 (3), 668-677.
3. Pietrobon, B.; McEachran, M.; Kitaev, V., Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS nano 2009, 3 (1), 21-26.
4. Sosa, I. O.; Noguez, C.; Barrera, R. G., Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B 2003, 107 (26), 6269-6275.
5. Link, S.; Mohamed, M. B.; El-Sayed, M., Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B 1999, 103 (16), 3073-3077.
6. Narayan, N.; Meiyazhagan, A.; Vajtai, R., Metal nanoparticles as green catalysts. Materials 2019, 12 (21), 3602.
7. Amirjani, A.; Fatmehsari, D. H., Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta 2018, 176, 242-246.
8. Chang, C. Y.; Lin, H. T.; Lai, M. S.; Shieh, T. Y.; Peng, C. C.; Shih, M. H.; Tung, Y. C., Flexible Localized Surface Plasmon Resonance Sensor with Metal-Insulator-Metal Nanodisks on PDMS Substrate. Scientific Reports 2018, 8.
9. Jo, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H. J.; Hong, J.; Park, J., Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sensors and Actuators B-Chemical 2020, 304.
10. Loiseau, A.; Zhang, L.; Hu, D.; Salmain, M.; Mazouzi, Y.; Flack, R.; Liedberg, B.; Boujday, S., Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing. Acs Applied Materials & Interfaces 2019, 11 (50), 46462-46471.
11. Wang, K.; Jiang, L.; Zhang, F.; Wei, Y. Q.; Wang, K.; Wang, H. S.; Qi, Z. J.; Liu, S. Q., Strategy for In Situ Imaging of Cellular Alkaline Phosphatase Activity Using Gold Nanoflower Probe and Localized Surface Plasmon Resonance Technique. Analytical Chemistry 2018, 90 (23), 14056-14062.
12. Kim, H. M.; Jeong, D. H.; Lee, H. Y.; Park, J. H.; Lee, S. K., Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance. Optics and Laser Technology 2019, 114, 171-178.
13. Zijlstra, P.; Paulo, P. M. R.; Orrit, M., Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnology 2012, 7 (6), 379-382.
14. Zhang, J.; Wang, L.; Zhang, B.; Zhao, H.; Kolb, U.; Zhu, Y.; Liu, L.; Han, Y.; Wang, G.; Wang, C., Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis 2018, 1 (7), 540-546.
15. Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q., Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society 2012, 134 (36), 15033-15041.
16. Ning, S.; Lin, H.; Tong, Y.; Zhang, X.; Lin, Q.; Zhang, Y.; Long, J.; Wang, X., Dual couples Bi metal depositing and Ag@ AgI islanding on BiOI 3D architectures for synergistic bactericidal mechanism of E. coli under visible light. Applied Catalysis B: Environmental 2017, 204, 1-10.
17. Gellé, A.; Moores, A., Plasmonic nanoparticles: Photocatalysts with a bright future. Current Opinion in Green and Sustainable Chemistry 2019, 15, 60-66.
18. Li, B.; Ye, K.; Zhang, Y.; Qin, J.; Zou, R.; Xu, K.; Huang, X.; Xiao, Z.; Zhang, W.; Lu, X., Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites. Advanced Materials 2015, 27 (8), 1339-1345.
19. Zhou, N.; Polavarapu, L.; Wang, Q.; Xu, Q.-H., Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency. ACS Applied Materials & Interfaces 2015, 7 (8), 4844-4850.
20. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J., Photoinduced conversion of silver nanospheres to nanoprisms. science 2001, 294 (5548), 1901-1903.
21. Pietrobon, B.; Kitaev, V., Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials 2008, 20 (16), 5186-5190.
22. Zhu, J.; Shen, Y.; Xie, A.; Qiu, L.; Zhang, Q.; Zhang, S., Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid. The Journal of Physical Chemistry C 2007, 111 (21), 7629-7633.
23. Huang, X.; Qi, X.; Huang, Y.; Li, S.; Xue, C.; Gan, C. L.; Boey, F.; Zhang, H., Photochemically controlled synthesis of anisotropic Au nanostructures: platelet-like Au nanorods and six-star Au nanoparticles. ACS nano 2010, 4 (10), 6196-6202.
24. Tang, B.; Sun, L.; Li, J.; Zhang, M.; Wang, X., Sunlight-driven synthesis of anisotropic silver nanoparticles. Chemical Engineering Journal 2015, 260, 99-106.
25. Antolini, E., Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Applied Catalysis B: Environmental 2016, 181, 298-313.
26. Ray, C.; Pal, T., Retracted Article: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. Journal of Materials Chemistry A 2017, 5 (20), 9465-9487.
27. Shimizu, K.-i.; Satsuma, A.; Hattori, T., Catalytic performance of Ag–Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Applied Catalysis B: Environmental 2000, 25 (4), 239-247.
28. Hirasawa, S.; Watanabe, H.; Kizuka, T.; Nakagawa, Y.; Tomishige, K., Performance, structure and mechanism of Pd–Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone. Journal of Catalysis 2013, 300, 205-216.
29. Yahya, A. A.; Rashid, K. T.; Ghadhban, M. Y.; Mousa, N. E.; Majdi, H. S.; Salih, I. K.; Alsalhy, Q. F., Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Membranes 2021, 11 (3), 171.
30. Pradhan, N.; Pal, A.; Pal, T., Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 196 (2-3), 247-257.
31. Berahim, N.; Basirun, W. J.; Leo, B. F.; Johan, M. R., Synthesis of bimetallic gold-silver (Au-Ag) nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. Catalysts 2018, 8 (10), 412.
32. Lang, B.; Yu, H.-K., Novel Ag2S nanoparticles on reduced graphene oxide sheets as a super-efficient catalyst for the reduction of 4-nitrophenol. Chinese Chemical Letters 2017, 28 (2), 417-421.
33. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group 2011, 1-11.
34. Fan, W.; Leung, M. K., Recent development of plasmonic resonance-based photocatalysis and photovoltaics for solar utilization. Molecules 2016, 21 (2), 180.
35. Zhang, X.; Chen, H.; Zhang, H., Layer-by-layer assembly: from conventional to unconventional methods. Chemical Communications 2007, (14), 1395-1405.
36. Richardson, J. J.; Björnmalm, M.; Caruso, F., Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348 (6233), aaa2491.
37. Kumar, K. A.; Ray, S. B.; Nagaraja, V.; Raichur, A. M., Encapsulation and release of rifampicin using poly (vinyl pyrrolidone)-poly (methacrylic acid) polyelectrolyte capsules. Materials Science and Engineering: C 2009, 29 (8), 2508-2513.
38. Wang, H.; Ishihara, S.; Ariga, K.; Yamauchi, Y., All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis. Journal of the American Chemical Society 2012, 134 (26), 10819-10821.
39. Hsu, S.-W.; On, K.; Tao, A. R., Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. Journal of the American Chemical Society 2011, 133 (47), 19072-19075.
40. Yan, N.; Zhang, Y.; He, Y.; Zhu, Y.; Jiang, W., Controllable location of inorganic nanoparticles on block copolymer self-assembled scaffolds by tailoring the entropy and enthalpy contributions. Macromolecules 2017, 50 (17), 6771-6778.
41. Jhang, W.-L.; Li, C.-J.; Wang, A.-S.; Liu, C.-W.; Hsu, S.-W., Tunable Optical Property of Plasmonic–Polymer Nanocomposites Composed of Multilayer Nanocrystal Arrays Stacked in a Homogeneous Polymer Matrix. ACS Applied Materials & Interfaces 2020, 12 (46), 51873-51884.
42. Zeng, J.; Tao, J.; Su, D.; Zhu, Y.; Qin, D.; Xia, Y., Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape. Nano letters 2011, 11 (7), 3010-3015.
43. Iben Ayad, A.; Luart, D.; Ould Dris, A.; Guénin, E., Kinetic analysis of 4-nitrophenol reduction by “water-soluble” palladium nanoparticles. Nanomaterials 2020, 10 (6), 1169.
44. Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R., High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21 (26), 12229-12234.
45. Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M., Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. Acs Catalysis 2011, 1 (8), 908-916.
46. Menezes, W. G.; Neumann, B.; Zielasek, V.; Thiel, K.; Bäumer, M., Bimetallic AuAg nanoparticles: enhancing the catalytic activity of Au for reduction reactions in the liquid phase by addition of Ag. ChemPhysChem 2013, 14 (8), 1577-1581.