簡易檢索 / 詳目顯示

研究生: 黃意晴
Huang, Yi-Ching
論文名稱: 彰濱海床土壤動態性質模式之探討
Study on the Dynamic Property Model of Changbin Seabed Soils
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 128
中文關鍵詞: 海床土壤雙曲線模型剪力模數阻尼比動態特性
外文關鍵詞: offshore subsoil, hyperbolic model, shear modulus, damping ratio, dynamic properties
相關次數: 點閱:70下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以使用台灣彰濱海床土壤重模試體進行室內試驗所得到之數據相互搭配獲得土壤的完整動態特性曲線並進行模擬,經由使用Hardin (1978)之最大剪力模數模型及Darendeli (2001)之雙曲線模型取得土壤動態性質曲線之模型參數,由此探討平均有效圍壓、孔隙比、飽和度以及細粒料含量等四項土壤參數對土壤動態性質模型之影響,並將由預測模型求取之剪力模數與室內試驗所得之試驗值進行比較。
    研究結果顯示,最大剪力模數會隨著平均有效圍壓增加而增加,並隨孔隙比增加而減少。正規化剪力模數衰減曲線之參考應變與平均有效圍壓、孔隙比、飽和度成正相關,而與細粒料含量成負相關;曲率係數主要與平均有效圍壓有關並與其呈正相關。其中,參考應變及曲率係數與平均有效圍壓之關係可由經驗公式表示。然而,阻尼比曲線的部分則因雙曲線函數之特性而導致曲線模擬結果與試驗結果於平均有效圍壓大小對阻尼比曲線之影響不相符。

    This study investigates the complete dynamic properties of Taiwan Changbin offshore soil by combining the data obtained from laboratory tests using reconstituted soil specimens. The soil behavior is simulated using the maximum shear modulus model proposed by Hardin (1978) and the hyperbolic models proposed by Darendeli (2001) to determine the model parameters of the soil dynamic properties. Four soil parameters, namely average effective stress, void ratio, saturation, and fines content, are examined for their influence on the soil dynamic property models. The predicted shear modulus values from the proposed model are compared with the experimental values obtained from indoor tests.
    The results indicate that the maximum shear modulus increases with an increase in average effective stress and decreases with an increase in void ratio. The reference strain of the normalized shear modulus degradation curve is positively correlated with average effective stress, void ratio, and saturation, while it is negatively correlated with the fines content. The curvature coefficient is mainly related to the average effective stress and shows a positive correlation with it. The relationship between the reference strain, curvature coefficient, and average effective stress can be represented by empirical formulas. However, the damping ratio curve is not well represented by the hyperbolic function due to its characteristics, which results in discrepancies between the curve simulation and test results concerning the influence of average effective stress on the damping ratio curve.

    摘要 i Extended Abstract iii 誌謝 xi 目錄 xiii 表目錄 xvii 圖目錄 xix 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法與流程 1 1.3 論文概述 2 第二章 文獻回顧 5 2.1 前言 5 2.2 土壤動態性質介紹 5 2.2.1 剪應變對動態性質之影響 5 2.2.2 剪力模數(shear modulus, G) 12 2.2.3 阻尼比(damping ratio, D) 13 2.3 土壤動態性質之量測方式 13 2.4 土壤剪力模數影響因子 16 2.4.1 孔隙比對剪力模數之影響 20 2.4.2 細粒料含量對剪力模數之影響 22 2.4.3 飽和度對剪力模數之影響 26 2.4.4 有效圍壓對剪力模數之影響 28 2.5 土壤阻尼比影響因子 30 2.5.1 孔隙比對阻尼比之影響 30 2.5.2 細粒料含量對阻尼比之影響 31 2.5.3 飽和度對阻尼比之影響 32 2.5.4平均有效圍壓對阻尼比之影響 33 第三章 試驗土樣與試驗原理 35 3.1 前言 35 3.2 試驗土樣與控制變因 35 3.3試驗原理 37 3.3.1 動力三軸試驗(DT) 37 3.3.2 共振柱試驗(RC) 42 3.3.3 共振柱/扭轉剪力試驗(RCTS) 51 3.3.4 反覆單剪試驗(CDSS) 53 第四章 分析模型 55 4.1 Hardin模型之最大剪力模數經驗式 55 4.2 Darendeli土壤動態性質模型 59 4.3 分析方法 66 4.3.1 最大剪力模數 67 4.3.2 動態特性曲線 67 第五章 模型比較與分析結果 69 5.1 最大剪力模數分析 69 5.1.1 平均有效圍壓 69 5.1.2 孔隙比 70 5.2 完整動態特性曲線 75 5.3 Darendeli (2001)經驗公式分析 79 5.3.1 正規化剪力模數衰減曲線 79 5.3.2 最小阻尼比 96 5.3.3 阻尼比曲線 99 5.4 預測曲線與試驗數值之比較 100 第六章 結論與建議 105 6.1結論 105 6.2建議 106 參考文獻 107 附錄A 各室內試驗之試驗流程圖 115 附錄B 最大剪力模數 121 附錄C 參考應變與土壤參數之關係圖 127

    1.Atkinson, J.H., and Sallfors, G., “Experimental determination of soil properties.” Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Vol. 3, No. 2, pp. 915-956, 1991.
    2.ASTM, “Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus.” International Standard Methods, ASTM, Vol. 91, No. Reapproved, pp. 1-16, 2013.
    3.Barros, J.M.C., “Factors affecting dynamic properties of soils.” Ph.D. Thesis, University of Michigan, 1994.
    4.Darendeli, B. M., “Development of a new family of normalized modulus reduction and material damping curves.” Ph.D. Dissertation, University of Texas at Austin., 362 p, 2001.
    5.Díaz-Rodríguez, J.A., and López-Molina, J.A., “Strain thresholds in soil dynamics.” Proceedings of the 14th World Conference on Earthquake Engineering, No. 4, pp. 12-17, 2008.
    6.El Mohtar, C.S., Drnevich, V.P., Santagata, M., and Bobet, A., “Combined resonant column and cyclic triaxial tests for measuring undrained shear modulus reduction of sand with plastic fines.” Geotechnical Testing Journal, ASTM, Vol. 36, No. 4, pp. 1-9, 2013.
    7.Hall, J.R. Jr., and Richart, F.E. Jr., “Dissipation of elastic wave energy in granular soils.” Journal of The Soil Mechanics and Foundation Division Proc., ASCE, Vol. 89, No. SM6, pp. 27-56, 1963.
    8.Hardin, B.O., and Richart, Jr. F.E., “Elastic wave velocities in granular soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65, 1963.
    9.Hardin, B.O., and Black, W.L., “Sand stiffness under various triaxial stresses.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. 2, pp. 27-42, 1966.
    10.Hardin, B.O., and Black, W.L., “Vibration modulus of normally consolidated clay.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369, 1968.
    11.Hardin, B.O., and Drnevich, V. P., “Shear modulus and damping in soils : measurement and parameter effects.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624, 1972a.
    12.Hardin, B.O., and Drenvich, V.P., “Shear modulus and damping in soils : design equations and curves.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692, 1972b.
    13.Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D., “A laboratory study on the undrained strength of a silty sand from central western Taiwan.” Soil Dynamics and Earthquake Engineering, Vol. 24, No. 9-10, pp. 733-743, 2004.
    14.Iwasaki, T., and Tatsuoka, F., “Effects of grain size and grading on dynamic shear moduli of sands.” Soils and Foundations, Vol. 17, No. 3, pp. 19-35, 1977.
    15.Iwasaki, T., Tatsuoka, F., and Takagi, Y., “Shear moduli of sands under cyclic torsional shear loading.” Soils and Foundations, Vol. 18, No. 1, pp. 39-56, 1978.
    16.Ishihara, K., Soil Behavior in Earthquake Geotechnics, Clarendon Press, Oxford, 1996.
    17.Jardine, R.J., “Some observations on the kinematic nature of soil stiffness.” Soil and Foundations, Vol. 32, No. 2, pp. 111-124, 1992.
    18.Kokusho, T., “Cyclic triaxial test of dynamic soil properties for wide strain range.” Soils and Foundations, Vol. 20, No. 2, pp. 45-60, 1980.
    19.Kim, T.C., and Novak, M., “Dynamic properties of some cohesive soils of Ontario.” Canadian Geotechnical Journal, Vol. 18, No. 3, pp. 371-389, 1981.
    20.Menq, F. Y., “Dynamic properties of sandy and gravelly soils.” Ph.D. Dissertation, University of Texas at Austin., 364 pp, 2003.
    21.Ni, S.H., “Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests.” Ph.D. Dissertation, University of Texas at Austin., 421 pp, 1987.
    22.Payan, M., Senetakis, K., Khoshghalb, A., and Khalili, N., “Characterization of the small-strain dynamic behavior of silty sands; contribution of silica non-plastic fines content.” Soil Dynamics and Earthquake Engineering, Vol. 102, No. 4, pp. 232-240, 2017.
    23.Qian, X., Gray, D.H., and Woods, R.D., “Resonant column tests on partially saturated sands.” Geotechnical Testing Journal, ASTM, Vol. 14, No. 3, pp. 266-275, 1991.
    24.Roesler, S. K., “Anisotropic shear modulus due to stress anisotropy.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT7, pp. 871-880, 1979.
    25.Seed, H.B., and Lee, K.L., “Liquefaction of saturated sands during cyclic loading.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, pp. 105-134, 1966.
    26.Seed, H.B., and Idriss, I.M., “Shear moduli and damping factor for dynamic response analysis.” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California, 1970.
    27.Silver, M.L., and Seed, H.B., “Deformation characteristics of sands under cyclic loading.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 8, pp. 1081-1098, 1971.
    28.Stoll, R.D., and Kald, L., “Threshold of dilatation under cyclic loading.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. 10, pp. 1174-1178, 1977.
    29.Seed, H.B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255, 1979.
    30.Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K., “Moduli and damping factors for dynamic analyses of cohesionless soil.” Journal of Geotechnical Engineering Division, ASCE, Vol. 112, No. GT11, pp. 1016-1032, 1986.
    31.Silver, M.L., “Load deformation and strength behavior of soil under dynamic loading.” Proceedings of International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamic, State-of-Art Paper, St. Louis, Vol. 3, No. 1, pp. 873-896, 1981.
    32.Santamarina, J.C., Klein, K.A., and Fam, M. A., Soils and Waves, New York:John Wiley & Sons, 2001.
    33.Tatsuoka, F., Iwasaki, T., and Takagi, Y., “Hysteretic damping of sands under cyclic loading and its relation to shear modulus.” Soils and Foundations, Vol. 18, No. 2, pp. 25-40, 1978.
    34.Thevanayagam, S., “Liquefaction potential and undrained fragility of silty soils.” Proceedings of the 12th World Conference Earthquake Engineering, New Zealand Society of Earthquake Engineering, 2000.
    35.Thevanayagam, S., and Martin, G.R., “Liquefaction in silty soils-screening and remediation issues.” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 4, pp. 1035-1042, 2002.
    36.Vucetic, M., and Dobry, R., “Effect of soil plasticity on cyclic response.” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 1, pp. 89-107, 1991.
    37.Vucetic, M., “Cyclic threshold shear strains in soils.” Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 12, pp. 2208-2228, 1994.
    38.Wichtmann, T., Navarrete Hernández, M.A., and Triantafyllidis, T., “On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand.” Soil Dynamics and Earthquake Engineering, Vol. 69, No. 1, pp. 103-114, 2015.
    39.Wang, Y., and Stokoe, K.H., “Development of constitutive models for linear and nonlinear shear modulus and material damping ratio of uncemented soils.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 148, No. 3, 2022.
    40.Yu, P., and Richart, Jr. F.E., “Stress ratio effects on shear modulus of dry sands.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 110, No. 3, pp. 331-345, 1984.
    41.吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,1985。
    42.林華悌,「粉質砂土阻尼比模式之探討」,碩士論文,國立成功大學土木工程研究所,2012。
    43.林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,國立陽明交通大學土木工程所,2003。
    44.李政融,「動力三軸試驗探討含細料粉質砂土之動態行為」,碩士論文,國立成功大學土木工程研究所,2010。
    45.李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010。
    46.倪勝火,「台灣低塑性粉土質砂工程性質與設計對策研究—子計畫二:台灣西部粉質砂土層之動態特性研究」,行政院國家科學委員會專題研究計畫成果報告,2010。
    47.紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,2020。
    48.徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,2002。
    49.徐羽柔,「應用動力三軸探討海床土壤之動態特性」,碩士論文,國立成功大學土木工程研究所,2020。
    50.陳堯中、游步上,「臺北粉土質砂之剪力模數與阻尼比」,中國土木水利工程學刊,第二卷,第三期,第213-223頁,1990。
    51.陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010。
    52.黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程研究所,2007。
    53.黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」,地工技術雜誌,第121期,第5-16頁,2009。
    54.葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,2011。
    55.游易宸,「基於全球資料庫的土壤動力參數估算」,碩士論文,國立台灣大學土木工程研究所,2021。
    56.鄭鈺諠,「不飽和夯實土壤之動態性質」,碩士論文,國立中央大學土木工程研究所,2010。
    57.鄭郁靜,「應用共振/扭轉剪力試驗對離岸海床土壤動態性質之研究」,碩士論文,國立成功大學土木工程研究所,2022。
    58.戴福明,「應用扭轉剪力法對土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,1992。
    59.魏珮羽,「應用反覆單剪試驗對離岸海床土壤動態性質之研究」,碩士論文,國立成功大學土木工程研究所,2022。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE