簡易檢索 / 詳目顯示

研究生: 張文銓
Chang, Wen-Chuan
論文名稱: 應用經顱直流電刺激強化腦機介面於中風病患手部復健
Application of Transcranial Direct Current Stimulation to Enhance a Brain-Computer-Interface for Hand Rehabilitation of Stroke Patients
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 108
中文關鍵詞: 腦機介面經顱直流電刺激共同空間型樣法大腦聯結中風復健
外文關鍵詞: brain-computer interface, transcranial direct current stimulation, common spatial pattern, brain connectivity, rehabilitation
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年有研究指出,應用腦機介面(Brain-Computer-Interface, BCI)的視覺回授以及中風患者想像動作時的大腦神經元刺激,可以有效幫助患者在大腦皮質認知(cognitive)與感覺運動(sensory-motor)區域之神經復健,透過活化受損區域或其他部位的大腦神經元,達到腦部功能復健之目的。同時,亦有團隊發現利用經顱直流電刺激(transcranial direct current stimulation, tDCS)於中風病患復健,可誘發大腦電位聯結並重組神經功能性結構,以改善其運動功能。
    本研究旨在整合腦機介面與經顱直流電刺激,希望結合此兩種不同的大腦神經活化機制,能幫助中風病患恢復其運動控制能力而提升生活品質。腦機介面識別系統部分使用共同空間型樣法,找出受測者對於想像左右手動作時之腦波特徵,藉此提升事件相關腦波的辨識率。本研究共徵召8位常人與2位中風病人,10位受測者隨機分為接受陽極直流電刺激的實驗組5人,以及接受偽陽極電刺激的對照組5人,實驗組在每次腦機介面訓練之前,需要先經過2mA的直流電刺激20分鐘,對照組則僅接受30秒電刺激。離線分析兩組受測者之腦波結果發現,陽極電刺激組之游標控制成功率沒有明顯改善,但反應時間則有明顯下降,另外,利用複雜網路分析大腦聯結變化以及磁振造影結果發現,經過訓練後之陽極電刺激組神經節點連結數增加,聯結訊號強度增強,聯結聚集程度較密集,由此推測陽極電刺激可能使大腦重塑,改善受測者之反應速度。

    Recent studies showed that using the feedback of brain-computer- interface (BCI) driven by imaginary movement of stroke patients can provide effective stimulation on the neurous in the cognitive and sensory-motor cortex. Neural rehabilitation can be achieved by activating the neurons in the lesion or other sites. The transcranial direct current stimulation (tDCS) was employed to treat stroke patients and it was found that the potential connectivity and functional structure of the brain can be reorganized.
    The goal of this study is to integrate the BCI and the tDCS on stroke patients to improve their hand motor controllability. The common spatial filter method was adopted to improve the BCI system developed by us. Eight healthy and two chronic stroke patients were recruited for testing the rehabilitation system. The subjects were randomly divided into tDCS and sham-tDCS. The tDCS group receives 2mA DC stimulation for 20 minutes before each BCI training. On the other hand, the sham-tDCS group only receives same DC stimulation for just 30 seconds. Off-line analyses of the EEG of all subjects showed that the accuracy of cursor control via the BCI is not improved by tDCS. On the contrary, the reaction time is reduced significantly. The brain connectivity analyses showed that for the tDCS group the number of connected nodes was increased, the connecting strength was enhanced and so was the degree of clustering. The results conclude that anodal-tDCS might facilitate the organization of the brain manifested by the reduced reaction time.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.1.1 腦機介面與特徵擷取 1 1.1.2 經顱直流電刺激與中風復健 2 1.1.3 大腦聯結 3 1.2 文獻回顧 4 1.2.1 特徵擷取與共同空間型樣 4 1.2.2 經顱直流電刺激 5 1.2.3 大腦聯結 6 1.2.4 頻譜分析 7 1.3 研究動機與目的 9 第二章 方法與實驗 10 2.1 實驗設計 10 2.1.1 資料收集與分析程序 12 2.1.2 實驗設備 14 2.1.3 受測者 15 2.1.4 功能性磁振造影實驗流程 16 2.1.5 臨床指標 18 2.2 經顱直流電刺激 20 2.3 事件相關腦波特徵篩選 22 2.3.1 共同空間型樣法 22 2.3.2 線性識別分析 24 2.4 腦機介面控制系統 26 2.4.1 腦機介面系統設計 26 2.4.2 游標控制 29 2.5 大腦聯結分析 31 2.5.1 多正交視窗函數法 31 2.5.2 相位斜率指標 32 2.5.3 複雜網路分析 33 第三章 結果 37 3.1 多正交視窗函數法 37 3.2 特徵識別與共同空間型樣 38 3.3 腦機介面控制成功率與反應時間 40 3.4 大腦聯結量化指標 56 3.5 功能性磁振造影結果 90 3.6 中風病患臨床指標結果 94 第四章 討論 95 4.1 多正交視窗函數法與共同空間型樣法 95 4.2 腦機介面訓練 97 4.3 大腦聯結量化指標變化 100 4.4 功能性磁振造影與臨床評估指標 102 第五章 結論與建議 104 5.1 結論 104 5.2 建議 105 參考文獻 106

    1. Wolpaw, J.R., et al., Brain–computer interfaces for communication and control. Clinical Neurophysiology, 2002. 113(6): p. 767-791.
    2. Nirenber.Lm, J. Hanley, and E.B. Stear, NEW APPROACH TO PROSTHETIC CONTROL - EEG MOTOR SIGNAL TRACKING WITH AN ADAPTIVELY DESIGNED PHASE-LOCKED LOOP. Ieee Transactions on Biomedical Engineering, 1971. BM18(6): p. 389-&.
    3. Farwell, L.A. and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 1988. 70(6): p. 510-523.
    4. Costa, E.J.X. and E.F. Cabral Jr, EEG-based discrimination between imagination of left and right hand movements using adaptive gaussian representation. Medical Engineering & Physics, 2000. 22(5): p. 345-348.
    5. Koles, Z., M. Lazar, and S. Zhou, Spatial patterns underlying population differences in the background EEG. Brain Topography, 1990. 2(4): p. 275-284.
    6. Koles, Z., The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalography and Clinical Neurophysiology, 1991. 79(6): p. 440-447.
    7. Koles, Z.J., J.C. Lind, and P. Flor-Henry, Spatial patterns in the background EEG underlying mental disease in man. Electroencephalography and Clinical Neurophysiology, 1994. 91(5): p. 319-328.
    8. Koles, Z.J., J.C. Lind, and A.C.K. Soong, SPATIOTEMPORAL DECOMPOSITION OF THE EEG - A GENERAL-APPROACH TO THE ISOLATION AND LOCALIZATION OF SOURCES. Electroencephalography and Clinical Neurophysiology, 1995. 95(4): p. 219-230.
    9. Krauledat, M., et al., Towards Zero Training for Brain-Computer Interfacing. PLoS ONE, 2008. 3(8): p. e2967.
    10. Jaberzadeh, S. and M. Zoghi, Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance. Basic and Clinical Neuroscience, 2013. 4(3): p. 75-83.
    11. Hesse, S., et al., Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 2007. 25(1): p. 9-15.
    12. Steven, H.S., Exploring complex networks. Nature, 2001. 410(6825): p. 268-276.
    13. Newman, M.E.J., The Structure and Function of Complex Networks. SIAM Review, 2003. 45(2): p. 167-256.
    14. Friston, K.J., Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 1994. 2(1-2): p. 56-78.
    15. Nolte, G., et al., Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol, 2004. 115(10): p. 2292-307.
    16. Lu, C.F., et al., Reorganization of functional connectivity during the motor task using EEG time-frequency cross mutual information analysis. Clin Neurophysiol, 2011. 122(8): p. 1569-79.
    17. Thomson, D.J., Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 1982. 70(9): p. 1055-1096.
    18. Babadi, B. and E.N. Brown, A Review of Multitaper Spectral Analysis. Biomedical Engineering, IEEE Transactions on, 2014. 61(5): p. 1555-1564.
    19. Hansson, M., Multiple Window Decomposition of Time-Frequency Kernels Using A Penalty Function for Suppressed Sidelobes. Proc IEEE Int Conf Acoust Speech Signal Process, 2006. 3: p. III-III.
    20. Jun, X. and P. Flandrin, Multitaper Time-Frequency Reassignment for Nonstationary Spectrum Estimation and Chirp Enhancement. Signal Processing, IEEE Transactions on, 2007. 55(6): p. 2851-2860.
    21. 李阮耀, 腦機介面控制復健機械手於中風病患手部復健及功能性磁振造影評估. 2011: 國立成功大學機械工程學系碩士論文.
    22. 詹政翰, 腦機介面控制機器人於中風病患手指復健及大腦聯結評估. 2012: 國立成功大學機械工程學系碩士論文.
    23. 莊瑋智, 應用共同空間型樣法改善EEG控制矯形手於中風病患之復健. 2013.
    24. Feng, W.W., M.G. Bowden, and S. Kautz, Review of Transcranial Direct Current Stimulation in Poststroke Recovery. Topics in Stroke Rehabilitation, 2013. 20(1): p. 68-77.
    25. Gomez Palacio Schjetnan, A., et al., Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat, 2013. 2013: p. 170256.
    26. Bullock, T.H. and G.A. Horridge, Structure and function in the nervous systems of invertebrates / [by] Theodore Holmes Bullock and G. Adrian Horridge ; with chapters by Howard A. Bern, Irvine R. Hagadorn [and] J. E. Smith. 1965: W. H. Freeman.
    27. Schlaug, G., V. Renga, and D. Nair, TRanscranial direct current stimulation in stroke recovery. Archives of Neurology, 2008. 65(12): p. 1571-1576.
    28. Galea, J.M. and P. Celnik, Brain Polarization Enhances the Formation and Retention of Motor Memories. Journal of Neurophysiology, 2009. 102(1): p. 294-301.
    29. Kasashima, Y., et al., Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Experimental Brain Research, 2012. 221(3): p. 263-268.
    30. Dmochowski, J.P., et al., Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage, 2013. 75: p. 12-9.

    下載圖示 校內:2019-08-29公開
    校外:2019-08-29公開
    QR CODE