| 研究生: |
許亭儀 Hsu, Ting-Yi |
|---|---|
| 論文名稱: |
探討CD248基因在胰臟腺泡導管化生的角色 The role of CD248 gene in pancreatic acinar-to-ductal metaplasia |
| 指導教授: |
黃柏憲
Huang, Po-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 胰臟癌 、胰臟腺泡導管化生 、腫瘤微環境 、癌症異質性 、CD248 、癌相關纖維細胞 |
| 外文關鍵詞: | Pancreatic cancer, PDAC, Acinar-to-Ductal Metaplasia, ADM, CD248, CAFs, Heterogeneity |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰臟腺泡導管型態轉分化 (ADM) 是胰臟用以修復組織或應對環境刺激的可逆性機制。因為此機制使 PTF1α+ 外分泌腺泡細胞去分化並轉分化為具有始祖細胞特徵的 SOX9+ 導管細胞,異常的 ADM 被視為胰腺導管腺癌 (PDAC) 的初期特徵以及癌前病變。來自於胰臟組織的微環境刺激,不僅促使纖維細胞異常分化,更加速對胰臟外分泌腺泡細胞的轉分化過程,導致胰臟微環境之異質性,藉此反映在胰管腺癌患者的惡化速度以及對各種治療預後反應的差異。所以在此研究中我們探討一個在胰臟癌中經常受到DNA去甲基化機制所異常表達的胰臟基質基因- CD248在纖維細胞活化、胰管腺癌初期病變、與促發胰腺泡細胞導管化型態轉換的角色。在Cd248-/-; LSL-KrasG12D; Trp53fl/fl; Pdx1-Cre (Cd248-/--KPC) 轉基因小鼠之中,我們透過檢測分子特徵和形態,發現晚期ADM和胰腺上皮內細胞增生 (PanIN) 此兩種癌前病變均比KPC小鼠顯著下降,且更能維持外分泌腺泡團的細胞體系結構。Cd248-/--KPC 小鼠胰臟組織中含有較低SOX9+ 細胞族群,這也呈現出Cd248基因缺失對導管細胞群的增殖有抑制作用。此外,小鼠免疫組織染色檢測和細胞實驗均顯示Cd248野生型纖維細胞表現較高的α-SMA網絡,說明了Cd248能夠支持纖維細胞活化成肌纖維細胞。Cd248基因剔除型的小鼠胚胎纖維母細胞 (MEFs) 在癌細胞條件培養 (Conditioned medium) 所誘導下,對癌相關纖維母細胞亞型 (CAF subtype) 之特徵基因群也呈現出對比於Cd248野生型迥異的表達模式。而我的研究也在細胞實驗驗證了Cd248 野生型 MEFs 所分泌的旁泌因子對ADM型態轉分化的促進作用。整體而言,我的研究數據顯示CD248藉由調控纖維母細胞活化,加速對胰臟ADM的作用。
Acinar-to-Ductal Metaplasia (ADM) is a reversible cellular process in which pancreatic acinar cells respond to developmental cues or tissue injuries and transdifferentiate into progenitor-like SOX9+-ductal cells. Dysregulated fibroblasts in pancreatic microenvironment dynamically differentiate into cancer-associated fibroblasts (CAFs) and the heterogeneity may reflect diversified treatment responses and cancer progression in pancreatic ductal adenocarcinoma (PDAC). As high degrees of fibrosis present in PDAC tumor microenvironment, we focus on the role of a frequently demethylated stromal gene, CD248, and analyzed its activation in CAF and in the initiation of PDAC. We established transgenic mice with the Cd248-/-;LSL-KrasG12D;Trp53fl/fl;Pdx1-Cre (Cd248-/--KPC) genotype and analyzed its molecular pathological patterns to define the transdifferentiation between the ADM (early/late) and the pancreatic intraepithelial neoplasia (PanIN) precursor lesions. Multiplex immunofluorescence histochemistry staining of early-stage PDAC sections showed decreased frequency of both the late ADM and PanIN lesions and nicely maintained architectural acinar clusters in the Cd248-/--KPC mice as compared to those of KPC genotype. A lower level of SOX9+ population in the Cd248-/--KPC tissue consistently revealed the stimulatory effects of ectopic Cd248 expression in KPC tumors in accelerating the transdifferentiation of acinar cells into the ductal cells. Decreased α-SMA level in Cd248 deficient fibroblasts also indicated the myofibroblast promoting effects of Cd248 in both the tissue immunohistochemistry and in vitro assays. The wild type and the Cd248 knockout mouse embryo fibroblasts (MEFs) also demonstrated distinct stromal gene expression signatures of the myCAF and the iCAF subtypes. My work verified the ADM promoting capacity of paracrine factors secreted from Cd248 wild-type MEFs by using the Cd248 knockout approach in mice. In summary, our data supported that CD248 in CAFs is essential for cellular stimulation in the ADM of pancreatic acinar transdifferentiation.
1. Miller KD, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69, 363-385 (2019).
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 69, 7-34 (2019).
3. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74, 2913-2921 (2014).
4. Sausen M, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 6, 7686 (2015).
5. Waddell N, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495-501 (2015).
6. Witkiewicz AK, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6, 6744 (2015).
7. Moore PS, Beghelli S, Zamboni G, Scarpa A. Genetic abnormalities in pancreatic cancer. Mol Cancer 2, 7 (2003).
8. Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801-1806 (2008).
9. Gnoni A, et al. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci 14, 19731-19762 (2013).
10. Mino-Kenudson M, et al. Prognosis of invasive intraductal papillary mucinous neoplasm depends on histological and precursor epithelial subtypes. Gut 60, 1712-1720 (2011).
11. Ghidini M, et al. Surgery or Locoregional Approaches for Hepatic Oligometastatic Pancreatic Cancer: Myth, Hope, or Reality? Cancers (Basel) 11, (2019).
12. Chu LC, Goggins MG, Fishman EK. Diagnosis and Detection of Pancreatic Cancer. Cancer J 23, 333-342 (2017).
13. Mueller S, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62-68 (2018).
14. Javed MA, et al. Impact of intensified chemotherapy in metastatic pancreatic ductal adenocarcinoma (PDAC) in clinical routine in Europe. Pancreatology 19, 97-104 (2019).
15. Collisson EA, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17, 500-503 (2011).
16. Bailey P, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47-52 (2016).
17. Somerville TD, et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. Elife 9, (2020).
18. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 411, 375-379 (2001).
19. Curry JM, et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol 41, 217-234 (2014).
20. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423-1437 (2013).
21. Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett 380, 205-215 (2016).
22. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 387, 61-68 (2017).
23. Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother 10, 3354-3368 (2014).
24. Ligorio M, et al. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell 178, 160-175 e127 (2019).
25. Ene-Obong A, et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 145, 1121-1132 (2013).
26. Mahajan UM, et al. Immune Cell and Stromal Signature Associated With Progression-Free Survival of Patients With Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology 155, 1625-1639 e1622 (2018).
27. Chang CH, et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 162, 1229-1241 (2015).
28. Jang M, Kim SS, Lee J. Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45, e45 (2013).
29. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33, 207-214 (2012).
30. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol 8, 86 (2018).
31. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 348, 56-61 (2015).
32. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74, 665-674 (2014).
33. Kim JW, et al. Loss of fibroblast HIF-1alpha accelerates tumorigenesis. Cancer Res 72, 3187-3195 (2012).
34. Chiavarina B, et al. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis. Cell Cycle 9, 3534-3551 (2010).
35. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 16, 582-598 (2016).
36. Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4, 62 (2014).
37. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel) 7, 2443-2458 (2015).
38. Orimo A, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335-348 (2005).
39. Xiao Q, et al. Cancer-Associated Fibroblasts in Pancreatic Cancer Are Reprogrammed by Tumor-Induced Alterations in Genomic DNA Methylation. Cancer Res 76, 5395-5404 (2016).
40. Pidsley R, et al. Enduring epigenetic landmarks define the cancer microenvironment. Genome Res 28, 625-638 (2018).
41. Biffi G, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFbeta to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov 9, 282-301 (2019).
42. Laklai H, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med 22, 497-505 (2016).
43. Neesse A, Algul H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64, 1476-1484 (2015).
44. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418-429 (2012).
45. Jacobetz MA, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112-120 (2013).
46. Goetz JG, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148-163 (2011).
47. Waghray M, et al. GM-CSF Mediates Mesenchymal-Epithelial Cross-talk in Pancreatic Cancer. Cancer Discov 6, 886-899 (2016).
48. Ozdemir BC, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719-734 (2014).
49. Kaukonen R, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun 7, 12237 (2016).
50. Han X, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat Commun 9, 3390 (2018).
51. Ohlund D, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214, 579-596 (2017).
52. Elyada E, et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov 9, 1102-1123 (2019).
53. Bernard V, et al. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression. Clin Cancer Res 25, 2194-2205 (2019).
54. Patel AK, et al. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 7, 78 (2018).
55. Christian S, et al. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem 276, 7408-7414 (2001).
56. Opavsky R, et al. Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. J Biol Chem 276, 38795-38807 (2001).
57. Huang HP, et al. Gene targeting and expression analysis of mouse Tem1/endosialin using a lacZ reporter. Gene Expr Patterns 11, 316-326 (2011).
58. MacFadyen JR, et al. Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett 579, 2569-2575 (2005).
59. Christian S, et al. Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol 172, 486-494 (2008).
60. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61, 6649-6655 (2001).
61. Christian S, et al. Molecular cloning and characterization of EndoGlyx-1, an EMILIN-like multisubunit glycoprotein of vascular endothelium. J Biol Chem 276, 48588-48595 (2001).
62. Tomkowicz B, et al. Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proc Natl Acad Sci U S A 104, 17965-17970 (2007).
63. Maia M, et al. CD248 facilitates tumor growth via its cytoplasmic domain. BMC Cancer 11, 162 (2011).
64. Tomkowicz B, et al. Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer Biol Ther 9, 908-915 (2010).
65. Wilhelm A, et al. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut 65, 1175-1185 (2016).
66. Fujii S, et al. TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer. Cancer Med 4, 1667-1678 (2015).
67. Smith SW, et al. CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney Int 80, 199-207 (2011).
68. Pietrzyk L, Wdowiak P. Endosialin (TEM1) as a Diagnostic, Progression, and Prognostic Serum Marker for Patients With Colorectal Cancer-A Preliminary Study. Cancer Control 27, 1073274820903351 (2020).
69. Aquea G, et al. Increased expression of P2RY2, CD248 and EphB1 in gastric cancers from Chilean patients. Asian Pac J Cancer Prev 15, 1931-1936 (2014).
70. Mogler C, et al. Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol Med 9, 741-749 (2017).
71. Stanger BZ, Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology 144, 1170-1179 (2013).
72. Pinho AV, et al. Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 60, 958-966 (2011).
73. Houbracken I, et al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas. Gastroenterology 141, 731-741, 741 e731-734 (2011).
74. Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128, 728-741 (2005).
75. Shih HP, et al. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139, 2488-2499 (2012).
76. Morris JPt, Cano DA, Sekine S, Wang SC, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120, 508-520 (2010).
77. Gidekel Friedlander SY, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379-389 (2009).
78. Shibata H, et al. In vivo reprogramming drives Kras-induced cancer development. Nat Commun 9, 2081 (2018).
79. Wang L, et al. ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes Dev 33, 641-655 (2019).
80. Wang W, et al. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut 68, 1245-1258 (2019).
81. Nishikawa Y, et al. Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis. Oncogene 38, 4283-4296 (2019).
82. He P, Yang JW, Yang VW, Bialkowska AB. Kruppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology 154, 1494-1508 e1413 (2018).
83. Gao C, et al. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating beta-Catenin(Y654). Cell Mol Gastroenterol Hepatol 8, 561-578 (2019).
84. Direnzo D, et al. Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells. Gastroenterology 143, 469-480 (2012).
85. Johnson CL, Peat JM, Volante SN, Wang R, McLean CA, Pin CL. Activation of protein kinase Cdelta leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1. J Pathol 228, 351-365 (2012).
86. Babicky ML, et al. MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages. Oncogene 38, 5599-5611 (2019).
87. Liou GY, et al. The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis. Cell Rep 19, 1322-1333 (2017).
88. Chuvin N, et al. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRAS(G12D)-driven Pancreatic Tumorigenesis. Cell Mol Gastroenterol Hepatol 4, 263-282 (2017).
89. Liu J, et al. TGF-beta1 promotes acinar to ductal metaplasia of human pancreatic acinar cells. Sci Rep 6, 30904 (2016).
90. Liou GY, et al. Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-kappaB and MMPs. J Cell Biol 202, 563-577 (2013).
91. Liou GY, Storz P. Inflammatory macrophages in pancreatic acinar cell metaplasia and initiation of pancreatic cancer. Oncoscience 2, 247-251 (2015).
92. Liou GY, et al. Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov 5, 52-63 (2015).
93. Pitarresi JR, et al. Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia 18, 541-552 (2016).
94. Ding L, Liou GY, Schmitt DM, Storz P, Zhang JS, Billadeau DD. Glycogen synthase kinase-3beta ablation limits pancreatitis-induced acinar-to-ductal metaplasia. J Pathol 243, 65-77 (2017).
95. Carrer A, et al. Acetyl-CoA Metabolism Supports Multistep Pancreatic Tumorigenesis. Cancer Discov 9, 416-435 (2019).
96. Luo Y, et al. Oncogenic KRAS Reduces Expression of FGF21 in Acinar Cells to Promote Pancreatic Tumorigenesis in Mice on a High-Fat Diet. Gastroenterology 157, 1413-1428 e1411 (2019).
97. Cavaco ACM, Eble JA. A 3D Spheroid Model as a More Physiological System for Cancer-Associated Fibroblasts Differentiation and Invasion In Vitro Studies. J Vis Exp, (2019).
98. Rolver MG, Elingaard-Larsen LO, Pedersen SF. Assessing Cell Viability and Death in 3D Spheroid Cultures of Cancer Cells. J Vis Exp, (2019).
99. Grube L, Dellen R, Kruse F, Schwender H, Stuhler K, Poschmann G. Mining the Secretome of C2C12 Muscle Cells: Data Dependent Experimental Approach To Analyze Protein Secretion Using Label-Free Quantification and Peptide Based Analysis. J Proteome Res 17, 879-890 (2018).
100. Fleming Martinez AK, Storz P. Mimicking and Manipulating Pancreatic Acinar-to-Ductal Metaplasia in 3-dimensional Cell Culture. J Vis Exp, (2019).
101. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61, 1121-1135 (1990).
102. Kopp JL, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22, 737-750 (2012).
103. Prevot PP, et al. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut 61, 1723-1732 (2012).
104. Afelik S, Rovira M. Pancreatic beta-cell regeneration: Facultative or dedicated progenitors? Mol Cell Endocrinol 445, 85-94 (2017).
105. Nagathihalli NS, et al. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 7, 65982-65992 (2016).
106. Hwang HJ, Oh MS, Lee DW, Kuh HJ. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res 38, 258 (2019).
107. Mace TA, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67, 320-332 (2018).
108. Flint TR, et al. Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity. Cell Metab 24, 672-684 (2016).
109. McDonald PC, et al. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia. Gastroenterology 157, 823-837 (2019).
110. Logsdon DP, et al. Blocking HIF signaling via novel inhibitors of CA9 and APE1/Ref-1 dramatically affects pancreatic cancer cell survival. Sci Rep 8, 13759 (2018).
111. Pore N, et al. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors. Neoplasia 17, 473-480 (2015).
112. Knudsen ES, Balaji U, Freinkman E, McCue P, Witkiewicz AK. Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget 7, 78396-78411 (2016).
113. Okayama H, et al. NOS2 enhances KRAS-induced lung carcinogenesis, inflammation and microRNA-21 expression. Int J Cancer 132, 9-18 (2013).
114. Wang L, et al. NO(*) /RUNX3/kynurenine metabolic signaling enhances disease aggressiveness in pancreatic cancer. Int J Cancer 146, 3160-3169 (2020).
115. Wang J, et al. Inducible nitric oxide synthase enhances disease aggressiveness in pancreatic cancer. Oncotarget 7, 52993-53004 (2016).
116. Mayers JR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161-1165 (2016).
117. Liu RZ, Garcia E, Glubrecht DD, Poon HY, Mackey JR, Godbout R. CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid. Mol Cancer 14, 129 (2015).
118. Favorskaya I, Kainov Y, Chemeris G, Komelkov A, Zborovskaya I, Tchevkina E. Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer. Tumour Biol 35, 10295-10300 (2014).
119. Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 173, 19-33 (2017).
校內:2025-07-15公開