簡易檢索 / 詳目顯示

研究生: 陳諺輝
Chen, Yan-Hui
論文名稱: 螺栓孔於高溫下承壓行為之量測與數值模擬
Measurement and Numerical Simulations for Bearing Behavior of Bolt Holes at High Temperatures
指導教授: 鍾興陽
Chung, Hsin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 125
中文關鍵詞: CCDABAQUS螺栓承壓高溫
外文關鍵詞: CCD, ABAQUS, Bolt, Bearing, High Temperature
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 接觸式量測裝置,如LVDTs、extensometers、potentiometers…等。經常被使用於結構試驗之位移量測。然而,對於高溫結構構件試驗,此接觸式位移量測裝置既非常昂貴且常受到儀器本身最高工作溫度與最大伸長量之限制。因此,本文建立一套非接觸式CCD位移量測系統,以改善傳統高溫結構試驗之接觸式量測方式。比較結果發現,高溫下螺栓孔承壓破壞之實驗結果與ABAQUS/Standard有限元素數值模擬結果相一致,驗證了CCD位移量測系統在高溫下位移量測之可行且有效。此外,本文也以ABAQUS/Standard 程式做為數值模擬工具,建立一套有限元素分析模型來模擬螺栓孔於高溫下承壓之行為;在材料參數方面,以中鋼高溫材料試驗所得之結果,做為數值模擬分析之基礎。由試驗結果顯示出此有限元素數值模型可成功地模擬高溫下螺栓孔承壓之行為。

    Contact-type sensors, such as LVDTs, extensometers, potentiometers … etc., are frequently used for measuring displacements in structural component tests. However, for high temperature tests, contact-type displacement sensors are expensive and have their limits on working temperatures and elongations. In this research, a non-contact type CCD measuring system was developed to improve the displacement measurement in high temperature component tests. The developed CCD displacement measuring system is proved feasible and effective by the comparison that the measured displacement results from bolt hole bearing tests at high temperatures agreed well with the results simulated by the finite element program ABAQUS/Standard. In addition, a finite element model developed by ABAQUS/Standard was employed in this thesis to simulate the bearing behavior of bolt holes at high temperatures. The material parameters of test steels required in the numerical model were provided by the material lab of China Steel Corporation. The test results show that the proposed finite element numerical model can successfully simulate the bearing behavior of bolt holes at high temperature.

    摘要 I 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與範圍 3 1.4 論文架構 4 第二章 文獻回顧 5 2.1 常溫與高溫下螺栓孔之承壓行為 5 2.2 CCD量測系統之應用 6 2.3 有限元素數值分析 8 第三章 CCD位移量測系統之建立 11 3.1 前言 11 3.2 CCD基本結構與成像原理 12 3.2.1 光圈大小 12 3.2.2 影像之解析度 12 3.2.3 CCD成像公式 12 3.3 數位影像處理之基本概念 13 3.3.1 數位影像之量化 13 3.3.2 數位影像之邊緣檢測 15 3.3.3 影像校正 16 3.3.4 位移量測 17 3.3.5 數位影像之圖形比對 18 3.4 圖形比對技巧 21 3.4.1 最小反差(minimum contrast) 21 3.4.2 旋轉角度範圍(rotation angle ranges) 22 3.5 位移量測系統 22 3.5.1 位移量測系統之架構 22 3.5.2 量測精度 23 3.5.3 量測準度 24 3.5.4 CCD位移量測系統之優點 24 第四章 高溫下螺栓孔承壓行為之有限元素分析 32 4.1 前言 32 4.2 鋼材材料性質之模擬 32 4.2.1 柏松比(poisson’s ratio) 33 4.2.2 彈性模數(Elastic Modulus) 33 4.2.3 塑性性質 34 4.2.4 膨脹係數(coefficient of thermal expansion) 35 4.3 有限元素分析之相關理論 36 4.3.1 彈塑性有限元素法 36 4.3.2 真實應力應變轉換 39 4.3.3 Von Mises 降伏準則 42 4.3.4 Newton-Raphson演算法 43 4.3.5 元素選擇 44 4.3.6 收斂性判斷依據(convergence testing) 45 4.4 鋼材潛變理論概論 46 4.4.1 潛變曲線 47 4.4.2 Power Law 47 第五章 試驗規畫與過程 55 5.1 前言 55 5.2 試驗儀器之介紹 55 5.2.1 荷重單元 56 5.2.2 小型多功能耐火爐 56 5.2.3 油壓千斤頂 56 5.2.4 電動油壓機 57 5.2.5 上部U型鈎具與下部固定具 57 5.2.6 熱電耦式溫度計 57 5.2.7 位移量測裝置 57 5.2.8 訊號收集器 58 5.2.9 遮燄架 58 5.3 試體種類與製作 58 5.3.1 試體種類 58 5.3.2 試體規劃及編號 59 5.4 試驗過程 61 5.4.1 試驗儀器之架設 61 5.4.2 虛擬儀控程式之數據量測 62 5.4.3 高溫螺栓孔承壓試驗之流程 63 第六章 試驗結果與討論 75 6.1 SN490B鋼材 75 6.1.1 螺栓孔淨邊距0.5d之定溫加載試驗 75 6.1.2 螺栓孔淨邊距1.0d之定溫加載試驗 77 6.2 SN490C-FR耐火級鋼材 78 6.2.1 螺栓孔淨邊距0.5d之定溫加載試驗 79 6.2.2 螺栓孔淨邊距1.0d之定溫加載試驗 80 第七章 高溫螺栓孔承壓行為之數值模擬 89 7.1 前言 89 7.2 數值模擬分析方法 90 7.2.1 基本假設 90 7.2.2 模型建立方法 90 7.2.3 收斂分析 92 7.3 分析結果 93 7.3.1 SN490B鋼板且螺栓孔淨邊距0.5d定溫加載試驗 93 7.3.2 SN490B鋼板且螺栓孔淨邊距1.0之定溫加載試驗 94 7.3.3 SN490C-FR鋼板螺栓孔淨邊距0.5之定溫加載試驗 94 7.3.4 SN490C-FR鋼板螺栓孔淨邊距1.0d定溫加載試驗 95 7.4 比較與討論 96 7.5 螺栓孔邊距1.5in與淨邊距1.5d之強度預測 96 7.6 A325與A490螺栓與各螺栓孔承壓強度比較 97 7.7 包含潛變效應SN490C-FR螺栓孔邊距=1.0d 101 第八章 結論與建議 120 參考文獻 121 自述 125

    Buchanan, A. H. (2001), Structural Design for Fire Safety, John Wiley & Son Inc, New York, USA.

    Cai, J., Burgess, I. W. and Plank, R. J. (2002), “Modelling of Asymmetric Cross-Section Members for Fire Condition,”Journal of Constructional Steel Research, Vol. 58, pp.389-412

    Chong, C. P. and Matlock, R. B. (1976), “Light Gage Steel Bolted Connections without Washers,” Journal of Structural Division, ASCE, Vol.101, ST7, pp.1381-1391

    Fire-Comparisons with Eurocode 3,” Fire Safety Journal, Vol. 39, pp.23-39
    Fisher, J. W. and Struik, J. H. A. (1974), Guide to Design Criteria for Bolted and Riveted Joints, John Wiley & Son Inc, New York, USA.

    Friemel, B. H., Boho, L. N., Trahey, G. E. (1995), “Relative performance of two-dimensional speckle-tracking techniques: normalized correlation, non-normalized correlation and sum-absolute-difference”, IEEE Confs., vol.2, pp. 1481-1484

    Gilchrist, R. T. and Chong, K. P. (1979), “The Light Gage Steel Bolted Connections without Washers,” Journal of Structural Division, ASCE, Vol.105, ST1, pp.175-183

    Gillie, M., Usmani, A. S. and Rotter, J. M. (2002), “A Structural Analysis of the Cardington British Steel Corner Test,” Journal of Constructional Steel Research, Vol.58, pp.427-442.

    Gonzalez, R. C., Woods, R. E. (2002), Digital Image Processing, 2nd ed., Prentice Hall, IE

    Green, A. E., and Naghdi, P. M. (1965), “A General Theory of an Elastic-Plastic Continuum,” Arch. Rational Mech, Anal, Vol.18

    Harmathy, T. Z. (1993), Fire Safety Design & Concrete, Concrete Design and Construction Series, Longman Sicence & Technical, England, UK.

    Haussler, R. W. and Pabers, R. F. (1976), “Discussion:light-gage steel bolted connections without washers,” Journal of Structural Division, ASCE, Vol.102, ST12, pp.2375-2376

    Hill, R. (1958), “A General Theory of Uniqueness and Stability in Elasto-Plastic Solids,” Journal of the Mechanics and Physics of Solids, Vol.6, pp.236-249

    Holst, G. C. (1998), CCD ARRAYS CAMERAS and DISPLAYS , JCD Publishing, Winter Park, FL. 2nd ed

    Huang, Z., Burgess, I. W. and Plank, R. J. (2001), “Non-linear Structural Modelling of a Fire Test Subjected to High Restraint,”Fire Safety Journal, Vol. 36, pp. 795-814

    Kim, H. J. and Yura, J. A. (1999), “The Effect of Ultimate-to-Yield Ration on the Bearing Strength of Bolted Connections,” Journal of Constructional Steel Research, Vol. 49, No. 3, pp.255-269

    Kim, P. and Rhee, S. (1999), “Three-dimensional inspection of ball grid array using laser vision system,” IEEE Transactions on Electronics Packaging Manufacturing, Vol.22, Issue 2.

    Lawson, R. M. and Newman, G. M. (1996), Structural Fire Design to EC3 & EC4, and Comparison with BS 5950, Technical Report SCI Publication 159, the Steel Construction Institute, Berkshire, UK

    Liu, T. C. H. (1999), “Fire Resistance of Unprotected Steel Beams with Moment Connections, “Journal of Cons tructional Steel Research, Vol. 51, pp.61-77

    Lyons, J. S., Liu, J. and Sutton, M. A. (1996), ”high-temperature deformation measurements using digital-image correlation,” Experimental Mechanics,” Vol.36, pp.64-70.

    McAllister, T. et al. (2002), World Trade Center Building Performance Study:Data Collection, Preliminary Observations, and Recommendations, FEMA 403, Federal Emergency Management Administration, Washington D.C.

    Najjar, S. R. and Burgess, I. W. (1996), “A Nonlinear Analysis for Three Dimensional Steel Frames in Fire Condition,”Engineering Structures, Vol. 18, No. 1, pp.77-89

    Naghdi, P. M. (1960), “Stress-Strain Relations in Plasticity and Thermoplasticity, “Proc. 2nd Symposium on Naval Structure and Mechanics, Pergamon Press, pp. 121-169.

    Pian, T. H. H. (1957), “On a Variational Theorem for Finite Elastic Deformations, ”Journal of Mathematics and Physics, Vol.32, Nos.2-3, July-Oct. pp-129-135

    Pratt, J. D. and Pardoen, G. (2002), “Numerical Modeling of Bolted Lap Joint Behavior,” Journal of Aerospace Engineering, ASCE, Vol 15, No. 1, pp 20-31

    Rex, Clinton O., and Easterling W. Samuel (2003), “Behavior and Modeling of a Bolt Bearing”, Journal of Structural Engineering, Vol. 129, No. 6, pp 792-800

    Sanad, A. M., Rotter, J. M., Usmani, A. S. and O’Connor, M. A. (2002),”Composite Beams in Large Buildings under Fire-Numerical Modelling and Structural Behavior,” Fire Safety Journal, Vol.35, pp.165-188

    Spyrou, S. and Davison, J. B. (2002), “Displacement Measurement in Studies of Steel T-Stub Connections,” Journal of Constructional Steel Research, Vol. 57, No. 6, pp.647-659

    Spyrou, S. and Davison, J. B. Burgess, I. W. and Plank, R. J. (2004), “Experimental and Analytical Investigation of the ‘Compression Zone’ Components within a Steel Joint at Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 60, No. 6, pp.841-865

    Spyrou, S. and Davison, J. B. Burgess, I. W. and Plank, R. J. (2004), “Experimental and Analytical Investigation of the ‘Tension Zone’ Components within a Steel Joint at Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 60, No. 6, pp.867-896

    Sutton, MA, Wolters, WJ, Peters, WH, Ranson, WF and McNeill, S. R. (1983), “Determination of displacements using an. improved digital correlation method”, Image and Vision. Computing, Vol. 1, no. 3, pp. 133-139.

    Wang, A., and Prager, W. (1954), “Thermal and Creep Effects in Work-Hardening Elastic-Plastic Solids,” Journal of the Aeronautical Sciences, Vol. 21, No. 5, May, pp.343-344,360.

    William E. L., Christopher N. M. and Stephen W. B.(2005), Physical Propeties of Structural Steels, Federal Building and Fire Safety Investigation of the World Trade Center Disaster,National institute of Standards and Technology.

    下載圖示 校內:2011-08-24公開
    校外:2016-08-24公開
    QR CODE