| 研究生: |
洪慈懿 Hung, Tzu-Yi |
|---|---|
| 論文名稱: |
發展模板輔助自組裝技術製備金奈米粒子團簇陣列結構 Development of Template-Assisted Self-Assembly Processes to Fabricate Arrarys of Hierarchical Gold Nanoparticles Clusters |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 分級多層次 、單一步驟圖案轉移 、原子力顯微鏡 、金屬奈米陣列 、奈米球微影 |
| 外文關鍵詞: | hierarchical multilayered, one-step pattern transfer, AFM, nanoparticle array, particle lithography |
| 相關次數: | 點閱:138 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來奈米粒子自組裝成分級多層次的微奈米結構吸引了更多的關注,製作此多層次的微奈米結構需要經過多個步驟,其中結合了微奈米結構製程、奈米粒子的合成及分子間自組裝等技術,然而由於過多的製程步驟及奈米粒子的合成而這些方法通常較耗時,為了克服目前方法的限制,本研究中我們致力於發展新的技術製作奈米粒子多層次的結構,並且也發展製作奈米粒子團簇陣列的方法。首先我們開發了一個新的製程策略使奈米粒子多層次的組裝,此方法利用一個進行具催化活性的微奈米模版進行原位奈米粒子合成法與一步圖案轉移法,一系列奈米粒子多層次結構成功被製備出來,其結構特徵及性質經由AFM、吸收光譜及XPS光譜進一步的驗證後確定為金奈米粒子的分級多層組裝而成。另外,在本實驗中我們也利用奈米球微影及微接觸印刷製作矽烷分子圖案陣列,再進一步使用不同的矽烷分子去控制金屬奈米粒子的排列,以製作金屬點狀奈米團簇陣列,其陣列間距從500 nm至100 nm之間可任意調整,並且已經成功地可以由AFM及SEM影像證明。這些具有特殊形貌的金奈米粒子的分級多層結構及金屬點狀奈米團簇陣列日後將應用於表面增強拉曼射散(SERS)或是生物傳感器的研究上,發展新型態化學或生物感測器。
Recently, hierarchical micro- and nanostructures of self-assembled nanoparticles have attracted more attention. Fabrication of hierarchical micro- and nanoparticle structures requires time-consuming, multiple steps that combine with fabrication process, synthesis and self-assembly of nanoparticles. To simplify the fabrication process and overcome limitations of prior approaches, we developed a new fabrication strategy to produce hierarchical assembly of nanoparticles using in-situ nanoparticle synthesis in conjunction with one-step pattern transfer process. Structural characterization using AFM, UV-Visible and XPS spectrum further confirms the morphology and property which correspond to the composition of hierarchical multilayered assembly of gold nanoparticles. In addition, we successfully utilized particle lithography and microcontact printing (μCP) in conjunction with organosilane chemistry to manufacture periodic arrays of metal nanoparticle clusters. The cluster size and interspaces between the ordered cluster arrays can be tuned with the diameter of template nanospheres. The morphology and chemical property of nanoparticle cluster arrays were further characterized using UV-Vis spectrum, A FM and SEM. Arrays of hierarchical gold nanoparticles clusters will be applied in SERS and biosensor application, developing label-free sensing systems.
1. D. Qin, Y. Xia, G. M. Whitesides, Nature Protocols, 2010, 5, 491 - 502
2. C.-K. Chiu, T.-J. M. Luo, ACS Appl. Mater. Interfaces, 2013, 5 (12), 5423–5429
3. X.J. Huang, J.H. Kim, Y.K. Choi, Gold Bull., 2008, 41 , 58.
4. R. Garcia, A. W. Knoll, E. Riedo, Nature Nanotechnology, 2014, 9, 577–587
5. J.-R. Li, J. C. Garno, Nano Lett, 2008, 8(7), 1916−1922.
6. S. W. Lee , Y.-B. Shin, K. S. Jeon, S. M. Jin, Y. D. Suh, S. Kim, J. J. Lee, M.-G. Kim, Ultramicroscopy, 2008, 108, 1302– 1306
7. L. Jiang, X. Chen, N. Lu, L. Chi, Acc. Chem. Res., 2014, 47, 3009−3017
8. K. Ariga, Y. Yamauchi, T. Mori, J. P. Hill, Adv. Mater., 2013, 25, 6477−6512.
9. F. Guan, M. Chena, W. Yang, J. Wang, S. Yong, Q. Xue, Applied Surface Science, 2005, 240, 24–27
10. A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 1993, 63, 2002−2004
11. D. Gentili, F. Valle, C. Albonetti, F. Liscio, M. Cavallini, Acc. Chem. Res., 2014, 47, 2692−2699
12. S. Y. Chou, P. R. Krauss, P. J. Renstrom, J. Vac. Sci. Technol. B, 1996, 14(6), 4129-4133
13. Image from the homepage Information Technology Resource and Forum, http://www.just2good.co.uk/cpuSilicon.php
14. R. Garcia, R. V. Martinez, J. Martinez, Chem. Soc. Rev., 2006, 35, 29-38
15. Y.-H. Shin, S.-H. Yun, S.-H. Pyo, Y.-S. Lim, H.-J. Yoon, K.-H. Kim, S.-K. Moon, S. W. Lee, Y. G. Park, S.-I. Chang, K.-M. Kim, J.-H. Lim, Angew. Chem. Int. Ed., 2010, 49, 9689 –9692
16. A. Pimpin, W. Srituravanich, ENGINEERING JOURNAL, 2012, 16, 37-55
17. Image from the homepage Abo Akademi University, http://www.abo.fi/fakultet/en/fysilangmuirblodgett
18. 曾賢德,物理雙月刊(32卷二期),2010年4月。
19. P. K. Jain , M. A. El-Sayed, Nano Lett., 2008, 8, 4347.
20. M. Faraday, Philos. Trans., 1857, 147, 145-181.
21. G. Mie, Ann. Phys., 1908, 25, 377.
22. Image from the homepage BWTEK, http://bwtek.com/raman-theory-of-raman-scattering
23. D. L. Jeanmaire, R. P. Van Duyne, J. Electroanal. Chem. 1977, 84, 1-20
24. Image from the homepage Bone Biology and Mechanics Lab, http://www.iupui.edu/~bbml/afmintro.shtml
25. K. C. Grabar , R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem., 1995, 67, 735-743
26. S. Bhattacharya, J. Biswasa, Nanoscale, 2011, 3, 2924
27. J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, H. Okamoto, Chem. Phys. Lett., 2005, 412, 41.
28. F. Kim, J. H. Song, P. Yang, J. Am. Chem. Soc., 2002, 124, 14316.
29. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, C. R. Chris. Wang, J. Phys. Chem. B, 1997, 101, 6661.
30. N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater. 2001, 13, 1389-1393.
31. M-L Hoa, B-J Chi, T-Y Hung, H-Y Liao, J-C Wang, T-Y Wang, J-J Shyueb, CrystEngComm, 2013, 15, 5937–6112
32. M. R. Langille, M. L. Personick, J. Zhang, C. A. Mirkin, J. Am. Chem. Soc., 2012, 134 (35), 14542–14554
33. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, D. P. Tsai, OPTICS EXPRESS, 2011, 19(18), 16975-16984
34. A. L. Brownfield, C. P. Causey, T. J. Mullen, J. Phys. Chem.C, 2015, 119(22), 12455-12463
35. N. Ishida, R. Nishihara, H. Imanaka, K. Imamura, Physicochem. Eng. Aspects. 2016, 495, 39–45
36. Q. Zhang, J.-J. Xu, Y. Liu, H. Y. Chen, Lab Chip. 2008, 8, 352-357
37. D. J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. H. Moore, A. B. Ellis, G. C. Lisensky, J. Chem. Educ.1999, 76(4),537-541