| 研究生: |
劉瑞文 Liu, Jui-wen |
|---|---|
| 論文名稱: |
以射頻磁控濺鍍法製備鍶銅氧化物透明導電膜之性質研究 Investigation on Properties of Transparent Conductive Strontium Copper Oxide Film by RF Magnetron Sputtering System |
| 指導教授: |
李世欽
Lee, Shih-chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 光電性質 、透明導電膜 、退火 、鍶銅氧 、濺鍍 、摻雜 、p型 |
| 外文關鍵詞: | Post-annealing, Transparent conducting oxide (TCO) films, strontium copper oxide, Optoelectronic properties, Sputtering, p-type |
| 相關次數: | 點閱:97 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的,在於利用磁控濺鍍法製備氧化銅鍶(strontium copper oxide, SCO)薄膜,並針對薄膜之結構、導電性質與光學性質進行研究。SCO薄膜先以不同的濺鍍參數進行濺鍍製程。濺鍍氣氛主要以氬氣與氧氣用不同的流量比混合。濺鍍完成後,再將薄膜置於氧氣氣氛下,以不同的退火溫度進行退火處理。根據低掠角薄膜X光繞射儀分析後的結果顯示,在4x10-1 Pa工作壓力下,當氧氣流量增加至10 sccm以上,可沉積出SrCu2O2導電相,並以氧氣流量20 sccm下沉積出的薄膜性質最佳,此時的電阻率、載子濃度與載子遷移率分別為6.64x10-2 Ω·cm、2.89x1021 cm-3及0.092 cm2 V-1s-1。其中薄膜的載子濃度與載子遷移率均隨氧氣的流量變化。載子濃度隨氧氣流量增加而增加,但載子遷移率則呈現相反的變化趨勢。薄膜之光學穿透率在29%~41%之間變化,並隨著氧氣流量增加而增加。
後半段之研究選擇在實驗中光學穿透率與電阻率最低的初鍍膜,在壓力1.01×10-5 Pa的純氧氣中進行退火製程,嘗試藉由結晶性的改善以增加載子遷移率。退火溫度分別為100℃、200℃、350℃、450℃,時間為三小時。實驗結果顯示適當的退火溫度可降低薄膜電阻率。隨著退火溫度上升,當退火溫度升高至350℃時,電阻率可降低至1.63x10-2 Ω·cm,此時的薄膜之載子濃度與載子遷移率分別為1.21x1021 cm-3與4.0x10-5 m2V-1S-1。其中,光學穿透率隨退火溫度的增加而有小幅度的增加,550 nm處的穿透率到達58.2%。研究中並發現當退火溫度上升到450℃時,會導致SrCu2O2導電相消失,使薄膜電阻率大幅上升。以霍爾效應分析量測對初鍍膜與退火處理後的薄膜進行分析,結果顯示兩者均為p型的半導體透明導電膜。
The main purpose of this study is to investigate the feasibility of depositing the strontium copper oxide (SCO) films by the radio frequency magnetron sputtering system. Structural, electrical and optical properties of these films were studied. The SCO films were first deposited with different combinations of Ar and O2 gas on glass substrates at room temperature, and then annealed in O2 atmosphere at different annealing temperature. Grazing incidence angle x-ray diffraction (GIAXRD) analysis showed that SrCu2O2 structure was achieved when oxygen flow was raised above 10 sccm, while the total working pressure was kept at 4.0x10-1 Pa. Both carrier density and resistivity of the film varied with oxygen partial pressure. The optimum optoelectrical properties appeared on the films deposited under pure O2 atmosphere. The carrier density of the films was increased as increasing of oxygen flow rate, but the variation in carrier mobility shown an opposite trend. The carrier density and resistivity of the film prepared with 20 sccm oxygen flow were 2.89x1021 cm-3 and 6.64x10-2 Ω·cm, respectively. The carrier mobility was 0.092 cm2 V-1s-1 and the Hall coefficient measured at room temperature indicated that the conduction was p-type. The optical transmittance in the visible range 550 nm was 29%~41%.
Then, the as-deposited films with the best optoelectrical properties were chosen to annealed at different temperatures ranging from 100℃ to 450℃ in an oxygen atmosphere controlled at 1.01×105 Pa. Results showed that the resistivity decreased as the annealing temperature raised from 100℃ to 350℃, and then increased when annealed at 450℃. Carrier density of an annealed film increased to 1.21x1021 cm-3 as the annealing temperature increased. Results also showed that the resistivity of a SCO film was correlated to the carrier mobility; the highest carrier mobility observed by annealing a SCO film at 350℃ was 4.0x10-5 m2V-1S-1. The optical transmittance of an annealed SCO film in the visible range at 550 nm fell between 52.6% and 58.2%. The Hall coefficient measured at room temperature indicated the nature of the as-deposited and annealed films were both p-type.
[1] 李玉華, "透明導電膜及其應用", 科儀新知, 12 (1990) 94-102.
[2] 楊明輝, "金屬氧化物透明導電材料的基本原理", 工業材料, 179 (2001) 134-144.
[3] 曲喜新, 楊邦朝, 姜節儉, 張懷武: 電子薄膜材料, 北京科學出版社, 1996, pp. 93.
[4] J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, "p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations", Materials Letters, 57 (2003) 3311-3314.
[5] B. Mayer, "Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD", Thin Solid Films, 221 (1992) 166-182.
[6] J. Ma, D. Zhang, J. Zhao, C. Tan, T. Yang, H. Ma, "Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature", Applied Surface Science, 151 (1999) 239-243.
[7] S. Chauhuri, J. Bhattacharyya, A. K. Pal, "Microstructure of indium tin oxide films produced by the D.C. sputtering technique", Thin Solid Films, 148 (1987) 279-284.
[8] T. C. Gorjanc, D. Leong, C. Py, D. Roth, "Room temperature deposition of ITO using r.f. magnetron sputtering", Thin Solid Films, 413 (2002) 181-185.
[9] T. Minami, Y. Takeda, S. Takata, T. Kakumu, "Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering", Thin Solid Films, 308-309 (1997) 13-18.
[10] H.-Y. Yeom, N. Popovich, E. Chason, D. C. Paine, "A study of the effect of process oxygen on stress evolution in d.c. magnetron-deposited tin-doped indium oxide", Thin Solid Films, 411 (2002) 17-22.
[11] A. Hjortsberg, I. Hamberg, C. G. Granqvist, "Transparent and heat-reflecting indium tin oxide films prepared by reactive electron beam evaporation", Thin Solid Films, 90 (1982) 323-326.
[12] R. Banerjee, D. Das, S. Ray, A. K. Batabyal, A. K. Barua, "Characterization of tin doped indium oxide films prepared by electron beam evaporation", Solar Energy Materials, 13 (1986) 11-23.
[13] A. S. A. C. Diniz, C. J. Kiely, I. Elfalla, R. D. Pilkington, A. E. Hill, "The effects of post-deposition annealing on the microstructure of electron-beam evaporated indium tin oxide thin films", Renewable Energy, 5 (1994) 209-211.
[14] J. George, C. S. Menon, "Electrical and optical properties of electron beam evaporated ITO thin films", Surface and Coatings Technology, 132 (2000) 45-48.
[15] M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, N. Yasui, "Characteristics of indium tin oxide thin films prepared using electron beam evaporation", Thin Solid Films, 447-448 (2004) 115-118.
[16] Y. Djaoued, V. H. Phong, S. Badilescu, P. V. Ashrit, F. E. Girouard, V. V. Truong, "Sol-gel-prepared ITO films for electrochromic systems", Thin Solid Films, 293 (1997) 108-112.
[17] S.-S. Kim, S.-Y. Choi, C.-G. Park, H.-W. Jin, "Transparent conductive ITO thin films through the sol-gel process using metal salts", Thin Solid Films, 347 (1999) 155-160.
[18] M. J. Alam, D. C. Cameron, "Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process", Thin Solid Films, 377-378 (2000) 455-459.
[19] R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, "Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique", Journal of Applied Physics, 83 (1998) 2139-2141.
[20] T. Maruyama, K. Fukui, "Indium tin oxide thin films prepared by chemical vapour deposition", Thin Solid Films, 203 (1991) 297-302.
[21] M. Girtan, G. Folcher, "Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process", Surface and Coatings Technology, 172 (2003) 242-250.
[22] H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, "Electrical properties of crystalline ITO films prepared at room temperature by pulsed laser deposition on plastic substrates", Thin Solid Films, 411 (2002) 32-35.
[23] F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, "The electro-optical properties of amorphous indium tin oxide films prepared at room temperature by pulsed laser deposition", Solar Energy Materials and Solar Cells, 71 (2002) 1-8.
[24] A. Suzuki, T. Matsushita, T. Aoki, A. Mori, M. Okuda, "Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition", Thin Solid Films, 411 (2002) 23-27.
[25] M. Mikawa, T. Moriga, Y. Sakakibara, Y. Misaki, K.-i. Murai, I. Nakabayashi, K. Tominaga, "Characterization of ZnO-In2O3 transparent conducting films by pulsed laser deposition", Materials Research Bulletin, 40 (2005) 1052-1058.
[26] J. Tashiro, A. Sasaki, S. Akiba, S. Satoh, T. Watanabe, H. Funakubo, M. Yoshimoto, "Room-temperature epitaxial growth of indium tin oxide thin films on Si substrates with an epitaxial CeO2 ultrathin buffer", Thin Solid Films, 415 (2002) 272-275.
[27] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, "Current injection emission from a transparent p--n junction composed of p-SrCu2O2/n-ZnO", Applied Physics Letters, 77 (2000) 475-477.
[28] H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, "Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure", Solid State Communications, 121 (2001) 15-17.
[29] H. Ohta, M. Orita, M. Hirano, H. Hosono, "Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO", Journal of Applied Physics, 89 (2001) 5720-5725.
[30] K. Hiroshi, Y. Hiroshi, U. Kazushige, H. Hideo, "Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions", MRS Bulletin, 25 (2000) 28-36.
[31] B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, A. J. Freeman, "Electronic structure and small polaron hole transport of copper aluminate", Physical Review B, 64 (2001) 155114.
[32] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, "P-type electrical conduction in transparent thin films of CuAlO2", Nature, 389 (1997) 939-942.
[33] Y. Wang, H. Gong, F. Zhu, L. Liu, L. Huang, A. C. H. Huan, "Optical and electrical properties of p-type transparent conducting Cu-Al-O thin films prepared by plasma enhanced chemical vapor deposition", Materials Science and Engineering B, 85 (2001) 131-134.
[34] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, "Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2", Journal of Applied Physics, 88 (2000) 4159-4163.
[35] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano, "Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition", Journal of Applied Physics, 89 (2001) 1790-1793.
[36] N. Duan, A. W. Sleight, M. K. Jayaraj, J. Tate, "Transparent p-type conducting CuScO2+x films", Applied Physics Letters, 77 (2000) 1325-1326.
[37] W. Kern, J. L. Vossen: Thin Film Processes, Academic Press, New York, 1978, pp. 134.
[38] D. S. Rickerby, A. Mathews: Advanced Surface Coatings: A Handbook of Surface Engineering, Blackie Academic and Professional, 1991, pp. 368.
[39] S. M. Rossnagel, J. J. Cuomo, W. D. Westwood: Handbook of Plasma Processing Technology, William Andrew Inc., 1990, pp. 523.
[40] W. Kern, J. L. Vossen: Thin Film Processes II, Academic Press, New York, 1991, pp. 21.
[41] J. A. Venables, G. D. T. Spiller, M. Hanbucken, "Nucleation and growth of thin films", Reports on Progress in Physics, 47 (1984) 399-459.
[42] B. A. Movchan, A. V. Demchishin, "Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide", The Physics of Metals and Metallography, 28 (1969) 83-90.
[43] J. A. Thornton, "Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings", Journal of Vacuum Science and Technology, 12 (1975) 830-835.
[44] J. A. Thornton, "The microstructure of sputter-deposited coatings", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 3059-3065.
[45] D. S. Ginley, C. Bright, "Transparent Conducting Oxides", MRS Bulletin, 25 (2000) 15-18.
[46] 楊明輝, "透明導電膜材料的研發近況", 工業材料, 193 (2003) 136-143.
[47] 楊明輝: 透明導電膜, 藝軒圖書出版社, 台北市, 2006, pp. 188.
[48] H. J. Osten, E. Bugiel, A. Fissel, "Epitaxial praseodymium oxide: a new high-K dielectric", Solid-State Electronics, 47 (2003) 2161-2165.
[49] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, H. Hosono, "Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides", Journal of Electroceramics, 4 (2000) 407-414.
[50] 日本術振興透明酸化物光電子材料第166委員: 透明導電膜技術, Ohmsha, 1999, pp. 352.
[51] E. R. Whipple, S. N. Subbarao, F. P. Koffyberg, "Electronic properties of semiconducting Cd2GeO4", Journal of Solid State Chemistry, 34 (1980) 231-239.
[52] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono, "Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure", Applied Physics Letters, 78 (2001) 1583-1585.
[53] A. N. Banerjee, K. K. Chattopadhyay, "Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films", Progress in Crystal Growth and Characterization of Materials, 50 (2005) 52-105.
[54] A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, "SrCu2O2: A p-type conductive oxide with wide band gap", Applied Physics Letters, 73 (1998) 220-222.
[55] J. C. F. Windisch, K. F. Ferris, G. J. Exarhos, Synthesis and characterization of transparent conducting oxide cobalt--nickel spinel films, in: The 47th international symposium: Vacuum, thin films, surfaces/interfaces, and processing NAN06, vol 19, AVS, Boston, Massachusetts (USA), 2001, pp. 1647-1651.
[56] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, H. Hosono, "Transparent p-type semiconductor: LaCuOS layered oxysulfide", Applied Physics Letters, 77 (2000) 2701-2703.
[57] H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, "Heteroepitaxial growth of a wide-gap p-type semiconductor, LaCuOS", Applied Physics Letters, 81 (2002) 598-600.
[58] H. Hiramatsu, M. Orita, M. Hirano, K. Ueda, H. Hosono, "Electrical conductivity control in transparent p-type (LaO)CuS thin films prepared by rf sputtering", Journal of Applied Physics, 91 (2002) 9177-9181.
[59] M. Joseph, H. Tabata, T. Kawai, "p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping", Japanese Journal of Applied Physics, 38 (1999) L1205-L1207.
[60] T. Yamamoto, H. Katayama-Yoshida, "Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO ", Japanese Journal of Applied Physics, 38 (1999) L166-L169.
[61] H. Ohta, M. Orita, M. Hirano, I. Yagi, K. Ueda, H. Hosono, "Electronic structure and optical properties of SrCu2O2", Journal of Applied Physics, 91 (2002) 3074-3078.
[62] D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, "Non-vacuum and PLD growth of next generation TCO materials", Thin Solid Films, 445 (2003) 193-198.
[63] R. O. Suzuki, P. Bohac, L. J. Gauckler, Thermodynamics and Phase Equilibria in the SrCuO System, in: vol 75, 1992, pp. 2833-2842.
[64] 顧鴻壽, 周本達, 陳密, 張德安, 樊雨心, 周宜衡: 平面面板顯示器基本概論, 高立圖書有限公司, 2007, pp. 788.
[65] A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, "Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films", Solar Energy Materials and Solar Cells, 89 (2005) 75-83.
[66] S. K. Choi, J. I. Lee, "Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19 (2001) 2043-2047.
[67] H. C. Lee, "The behaviors of the carrier concentrations and mobilities in indium-tin-oxide thin films by DC and RF-superimposed DC reactive magnetron sputtering at the various process temperatures", Applied Surface Science, 252 (2006) 2647-2656.
[68] C. Nunes de Carvalho, A. Luis, G. Lavareda, E. Fortunato, A. Amaral, "Effect of thickness on the properties of ITO thin films deposited by RF-PERTE on unheated, flexible, transparent substrates", Surface & Coatings Technology, 151-152 (2002) 252-256.
[69] C. H. Ong, H. Gong, "Effects of aluminum on the properties of p-type Cu-Al-O transparent oxide semiconductor prepared by reactive co-sputtering", Thin Solid Films, 445 (2003) 299-303.
[70] P. Sigmund, "Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets", Physical Review, 184 (1969) 383-416.
[71] 林光隆: 材料表面工程講義, 國立成功大學材料科學與工程學系, 2000, pp. 77.
[72] K. Wasa, S. Hayakawa: Handbook of Sputter Deposition Technology, William Andrew Publishing, 1992, pp. 4-1~77.
[73] H. Ma, J.-S. Cho, C.-H. Park, "A study of indium tin oxide thin film deposited at low temperature using facing target sputtering system", Surface and Coatings Technology, 153 (2002) 131-137.
[74] B. N. Chapman: Glow Discharge Process, John Wiley & Sons, 1980, pp. 21-48.
[75] E. Bobeico, F. Varsano, C. Minarini, F. Roca, "P-type strontium-copper mixed oxide deposited by e-beam evaporation", Thin Solid Films, 444 (2003) 70-74.
[76] B. D. Cullity: Elements of X-Ray Diffraction Addison Wesley Publishing Company, New York, 1978, pp. 555
[77] F. Zhu, K. Zhang, B. L. Low, S. F. Lim, S. J. Chua, "Morphological and electrical properties of indium tin oxide films prepared at a low processing temperature for flexible organic light-emitting devices", Materials Science and Engineering B, 85 (2001) 114-117.
[78] H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, "Electrical, optical, and structural properties of indium--tin--oxide thin films for organic light-emitting devices", Journal of Applied Physics, 86 (1999) 6451-6461.
[79] J. W. Liu, S. C. Lee, C. H. Yang, "Properties of Strontium Copper Oxide Films Prepared by Radio Frequency Reactive Magnetron Sputtering with Different Oxygen Partial Pressures", Materials Transactions, JIM, 48 (2007) 2743-2746.
[80] C. G. Choi, K. No, W.-J. Lee, H.-G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, C. Yoon, "Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering", Thin Solid Films, 258 (1995) 274-278.
[81] J. W. Bae, H. J. Kim, J. S. Kim, N. E. Lee, G. Y. Yeom, "Effects of oxygen ion beam plasma conditions on the properties of Indium tin oxide thin films", Vacuum, 56 (2000) 77-81.
[82] D. Kim, S. Kim, "AFM observation of ITO thin films deposited on polycarbonate substrates by sputter type negative metal ion source", Surface and Coatings Technology, 176 (2003) 23-29.
[83] J. F. Chang, W. C. Lin, M. H. Hon, "Effects of post-annealing on the structure and properties of Al-doped zinc oxide films", Applied Surface Science, 183 (2001) 18-25.
[84] A. M. Fox, M. Fox: Optical Properties of Solids, Oxford University Press, New York, 2001, pp. 324.
[85] X. Nie, S. H. Wei, S. B. Zhang, "First-principles study of transparent p-type conductive SrC2O2 and related compounds", Physical Review B, 65 (2002) 075111.
[86] E. Burstein, "Anomalous Optical Absorption Limit in InSb", Physical Review, 93 (1954) 632-633.
[87] T. S. Moss, "The Interpretation of the Properties of Indium Antimonide", Proceedings of the Physical Society. Section B, 67 (1954) 775-782.
[88] H. C. Yu, Y. H. Chen, C. L. Liao, K. Z. Fung, "Preparation and characterization of rf-sputtered Sr-doped lanthanum cuprate thin films on yttria-stabilized zirconia substrates", Journal of Alloys and Compounds, 395 (2005) 286-290.
[89] H. C. Lee, O. O. Park, "Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering", Vacuum, 75 (2004) 275-282.
[90] M. T. Bhatti, A. M. Rana, A. F. Khan, "Characterization of rf-sputtered indium tin oxide thin films", Materials Chemistry and Physics, 84 (2004) 126-130.
[91] C. H. Yang, S. C. Lee, S. C. Chen, T. C. Lin, "The effect of annealing treatment on microstructure and properties of indium tin oxides films", Materials Science and Engineering B, 129 (2006) 154-160.
[92] S. S. Kim, S. Y. Choi, C. G. Park, H. W. Jin, "Transparent conductive ITO thin films through the sol-gel process using metal salts", Thin Solid Films, 347 (1999) 155-160.