簡易檢索 / 詳目顯示

研究生: 王奕雯
Wang, I-Wen
論文名稱: 溶液法製備鋅錫氧化物薄膜電晶體之光感測特性研究
Photosensing characteristics of solution processed zinc tin oxide thin film transistors
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 溶液法薄膜電晶體光感測器染料敏化
外文關鍵詞: solution processed, thin film transistor, photosensor, dye-sensitized
相關次數: 點閱:105下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以溶液法製備鋅錫氧化物薄膜電晶體(Zinc Tin Oxide Thin Film Transistor, ZTO TFT),並以波長為405nm、532nm及635nm雷射光作為光源(相對應的光子能量為3.06eV、2.33eV及1.95eV),針對其作為光電晶體(photo-TFT),在不同波長的照射光下得到的性質作分析。此外,實驗也製備了紅汞敏化鋅錫氧化物薄膜電晶體(Mercurochrome-sensitized ZTO TFT),並以532nm雷射光作為光源,針對其作為可見光光電晶體的性質做分析。電性量測部分包含照光與未照光下的汲極電流-閘極電壓曲線(ID-VG curve)以及汲極電流-汲極電壓曲線(ID-VD curve)的電性分析,計算出照光前後的基本電性變化:臨界電壓偏移量(Threshold voltage shift, △VTH)、次臨界擺幅偏移量(Subthreshold swing shift, △S.S.),用以討論ZTO TFT的光反應機制;以及photo-TFT性質參數:光敏性(Sensitivity)、光響應(Responsivity)以及外部量子效率(External Quantum Efficiency, EQE),用以判斷photo-TFT的優劣。
    本研究第一部分主要針對ZTO TFT之光感測性質作討論,紫外光-可見光吸收光譜(UV-vis absorption spectra)計算出的 ZTO薄膜能隙為3.85eV,對於入射光小於能隙之光反應,與ZTO內部的中性氧空缺(Vo)受光激發為帶電氧空缺(Vo+/ Vo2+)而產生多餘載子有關;波長越短(即入射光能量越大)、功率密度越大,受光激發產生的載子數目就越多;而閘極偏壓越大,電晶體通道層的累積電子會增多,能移動的載子數也越多,造成光電流越大,光響應也越高。然而閘極偏壓越大,原有之暗電流也較高,則會使得光敏性較差。因此ZTO TFT適合作為紫光-紫外光感測器,在適當的閘極偏壓下,可以達到高光敏性,並能藉由控制閘極偏壓的大小,而達到訊號放大的效果。
    本研究第二部分則針對紅汞敏化(Mercurochrome-sensitized) ZTO TFT之可見光感測性質作討論。根據UV-vis absorption spectra結果,紅汞在500nm左右會有一個吸收峰,且其吸收度隨紅汞濃度增加(0.16mM~1.32mM)而增加。實驗中在ZTO上吸附不同濃度的紅汞溶液,形成Mercurochrome-sensitized ZTO TFT,其對532nm的光感測性質隨紅汞濃度不同而有不同程度的提升。Mercurochrome-sensitized ZTO TFT的光反應機制,除了原本ZTO內部的中性氧空缺受激發提供額外載子,mercurochrome吸收可見光而激發的載子也能有效傳遞至ZTO的導帶(conduction band, Ec)上,促進Mercurochrome-sensitized ZTO TFT對可見光的光反應。從實驗結果可以獲得紅汞敏化的最佳濃度值為0.66mM,而此最佳參數之Mercurochrome-sensitized ZTO TFT對405nm和635nm的光反應也有所提升,可以作為寬能譜光感測器。

    In this study, zinc tin oxide thin film transistors (ZTO TFTs) are fabricated via solution process. As a photo-TFT, the photosensing properties under illumination of 405nm, 532nm and 635nm lasers are investigated. In addition, mercurochrome, which absorbed visible light, is incorporated to ZTO and the photo-TFT properties of mercurochrome-sensitized ZTO TFTs under illumination of 532nm laser are investigated.
    Transfer characteristics (ID-VG curves) and output characteristics (ID-VD curves) in the dark and under illumination are measured on these TFTs. The VTH shift (△VTH) and Subthreshold swing shift (△S.S.) before and after light illumination are obtained to demonstrate the photoresponse mechanism of ZTO TFTs. Furthermore, photo-TFT parameters such as sensitivity, responsivity and external quantum efficiency(EQE) are also extracted.
    In the first part, the photosensing properties of ZTO TFT are analyzed. UV-vis spectra indicate that the bandgap of our ZTO thin film is 3.85eV. The photoresponse of below bandgap illumination is related to the ionization of neutral oxygen vacancies (Vo) to positively-charged oxygen vacancies (Vo+/ Vo2+). The larger the energy and the power density of the incident light, the more the photogenerated carriers. On the other hand, as the gate voltage gets more positive, the number of free carriers increase so that the photocurrents as well as responsivities are enhanced. However, the larger the gate biases, the larger the original dark current, leading to worse sensitivity. As a result, ZTO TFTs can be used as Purple - Ultraviolet light photosensors, the high sensitivity can be achieved at an appropriate gate bias and the signals can be magnified by applying larger gate biases.
    In the second part, the visible light photosensing properties of mercurochrome-sensitized ZTO TFT are investigated. According to UV-vis absorption spectra of mercurochrome, there is an absorption peak at approximately 500nm and the absorbance is increased with increasing concentrations (0.16mM~1.32mM) of the mercurochrome. The degree of promotion of the photoresponse under illumination of 532nm laser of mercurochrome-sensitized ZTO TFT depended on the concentration of the mercurochrome. In addition to the photogenerated electrons from ionization of neutral oxygen vacancies in ZTO, the photogenerated electrons in the mercurochrome successfully transferred to the conduction band of ZTO enhanced the photoresponse in the visible light region. The photoresponse of the optimal mercurochrome(0.66mM)-sensitized ZTO TFT are also improved under illuminations of 405nm and 635nm lasers and thus it can be applied as a wide spectral photosensor.

    摘要....................................................I Abstract..............................................III 誌謝...................................................IX 目錄...................................................XI 圖目錄................................................XIV 表目錄................................................XIX 第一章 緒論..............................................1 1-1前言.................................................1 1-2研究目的與動機........................................2 第二章 理論基礎..........................................3 2-1 薄膜電晶體...........................................3 2-1.1 薄膜電晶體結構.....................................3 2-1.2 薄膜電晶體操作原理.................................5 2-1.3 薄膜電晶體參數計算.................................9 2-2 光檢測器............................................12 2-2.1 光檢測器種類......................................12 2-2.2光檢測器特性參數...................................19 2-3 氧化物半導體光檢測器文獻回顧.........................21 2-3.1氧化物光二極體(Oxide photodiode)文獻回顧............21 2-3.2 氧化物場效光電晶體(Oxide photo-TFT)文獻回顧........24 2-4影像感測器(Image Sensor).............................28 第三章 實驗方法與步驟....................................36 3-1 實驗材料............................................36 3-1.1 實驗相關藥品......................................36 3-1.2 電子束蒸鍍源(Evaporation source)..................36 3-1.3 基板(Substrate)..................................36 3-2 實驗流程............................................37 3-2.1 基板之清洗........................................37 3-2.2 溶液之製備........................................37 3-2.3 薄膜電晶體之製作..................................38 3-3 分析儀器............................................39 3-3.1 表面粗度儀(Alpha-Step Profilometer)...............39 3-3.2 低掠角X-光繞射儀 (Grazing Incident Angle X-ray Diffraction,GIAXRD)....................................40 3-3.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) .......................................................41 3-3.4 穿透式電子顯微鏡(Transmission Electron Microscopy)42 3-3.5 原子力顯微鏡(Atomic Force Microscopy, AFM)........43 3-3.6 紫外光-可見光光學儀(UV-visible Spectrometer)......44 3-3.7 光激發螢光頻譜(Photoluminescence, PL).............45 3-3.8 X光光電子能譜儀(X-ray Photoelectron Spectroscopy).46 3-3.9 精密半導體參數分析儀 (Precision Semiconductor Parameter Analyzer)....................................47 第四章 結果與討論.......................................48 4-1 元件的命名..........................................48 4-2 元件的材料分析......................................50 4-3 ZTO TFT之光感測特性分析.............................66 4-3.1 基本TFT性質.......................................66 4-3.2 Photo-TFT性質....................................68 4-3.3 ZTO TFT光感測性質小結.............................79 4-4 Mercurochrome-sensitized ZTO TFT之光感測特性分析....80 4-4.1 基本TFT性質.......................................80 4-4.2 Photo-TFT性質....................................89 4-4.3 光反應機制.......................................107 4-4.4 Mercurochrome-sensitized ZTO TFT光感測性質小結...109 結論..................................................110 參考資料...............................................111

    [1] John F. Wager, Bao Yeh, Randy L. Hoffman and Douglas A. Keszler, “An amorphous oxide semiconductor thin-film transistor route to oxide electronics,” Current Opinion in Solid State and Materials Science, vol. 18, pp. 53–61, 2014.
    [2] Ting-Chou Lu, Wei-Tsung Chen, Hsiao-Wen Zan and Ming-Dou Ker, “Investigating electron depletion effect in amorphous indium – gallium – zinc-oxide thin-film transistor with a floating capping metal by technology computer-aided design simulation and leakage reduction,” Japanese Journal of Applied Physics, vol. 53, p. 064302, 2014.
    [3] Wangying Xu, Han Wang, Lei Ye and Jianbin Xu, “The role of solution-processed high- k gate dielectrics in electrical performance of oxide,” Journal of Materials Chemistry C, vol. 2, pp. 5389–5396, 2014.
    [4] Eungtaek Kim, Choong-Ki Kim, Myung Keun Lee, Tewook Bang, Yang-Kyu Choi, Sang-Hee Ko Park and Kyung Cheol Choi, “Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors,” Applied Physics Letters, vol. 108, p. 182104, 2016.
    [5] Li-Chih Liu, Jen-Sue Chen and Jiann-Shing Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Applied Physics Letters, vol. 105, p. 023509, 2014.
    [6] Wei-Hao Tseng, Shao-Wei Fang, Chia-Yang Lu, Hung-Yang Chuang, Fan-Wei Chang, Guan-Yu Lin, Tsu-Wei Chen, Kang-Hung Ma, Hong-Syu Chen, Teng-Ke Chen, Yu-Hung Chen, Jen-Yu Lee, Tsung-Hsiang Shih, Hung-Che Ting, Chia-Yu Chen, Yu-Hsin Lin, Hong-Jye Hong, “The effect of nitrous oxide plasma treatment on the bias temperature stress of metal oxide thin film transistors with high mobility,” Solid-State Electronics, vol. 103, pp. 173–177, 2015.
    [7] Yongkook Park, Hyung-Youl Park, Dong-Ho Kang, Gwang-Sik Kim, Donghwan Lim, Hyun-Yong Yu, Changhwan Choi and Jin-Hong Park, “The Effect of Post-Fabrication Annealing on an Amorphous IGZO Visible-Light Photodetector,” Journal of Nanoscience and Nanotechnology, vol. 16, pp. 11745–11749, 2016.
    [8] Arokia Nathan, Sungsik Lee, Sanghun Jeon, and John Robertson, “Amorphous Oxide Semiconductor TFTs for Displays and Imaging,” Journal of Display Technology, vol. 10, pp. 917-927, 2013.
    [9] Weihao Wang, Xinhua Pan, Wen Dai, Yiyu Zeng and Zhizhen Ye, “Ultrahigh sensitivity in the amorphous ZnSnO UV,” RSC Advances, vol. 6, pp. 32715–32720, 2016.
    [10] Xiang Liu, Xiaoxia Yang, Mingju Liu, Zhi Tao, Qing Dai, Lei Wei, Chi Li, Xiaobing Zhang, Baoping Wang and Arokia Nathan, “Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface,” Applied Physics Letters, vol. 104, p. 113501, 2014.
    [11] Jiin Yu, Seung Won Shin, Kwang-Ho Lee, Jin-Seong Park and Seong Jun Kang, “Visible-light phototransistors based on InGaZnO and silver nanoparticles,” Journal of Vacuum Science & Technology B, vol. 33, p. 061211, 2015.
    [12] E. Fortunato, P. Barquinha and R. Martins, “Oxide Semiconductor Thin-Film Transistors : A Review of Recent Advances,” Advanced Materials, vol. 24, pp. 2945–2986, 2012.
    [13] Stuart R. Thomas, Pichaya Pattanasattayavong and Thomas D. Anthopoulos, “Solution-processable metal oxide semiconductors for thin-film transistor applications,” Chemical Society Reviews, vol. 42, pp. 6910-6923, 2013.
    [14] John F. Wager, Douglas A. Keszler, and Rich E. Presley. Transparent Electronics. Springer: New York, 2008; p. 114.
    [15] S. D. Brotherton. Introduction to Thin Film Transistors. Springer: Switzerland, 2013; pp. 49-53.
    [16] Kwang Hwan Ji, Ji-In Kim, Hong Yoon Jung, Se Yeob Park, Yeon-Gon Mo, Jong Han Jeong, Jang-Yeon Kwon, Myung-Kwan Ryu, Sang Yoon Lee, Rino Choi and Jae Kyeong Jeong, “The Effect of Density-of-State on the Temperature and Gate Bias-Induced Instability of InGaZnO Thin Film Transistors,” Journal of The Electrochemical Society, vol. 157, pp. H983-H986, 2010.
    [17] A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, “Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations” Journal of The Electrochemical Society, vol. 140, pp. 3679–3683, 1993.
    [18] Myeong Gu Yun, Cheol Hyoun Ahn, Ye Kyun Kim, Sung Woon Cho, Hyung Koun Cho and Hyoungsub Kim, “Effects of top-layer thickness on electrical performance and stability in VZTO/ZTO bi-layer thin-film transistors,” Journal of Alloys and Compounds, vol. 672, pp. 449–456, 2016.
    [19] Donald A. Neamen. Semiconductor Physics And Devices, 4th ed.; McGraw-Hill: New York, 2011; pp. 642-643.
    [20] Sheng S. Li. Semiconductor Physical Electronics, 2nd ed.; Springer: New York, 2006; pp. 422-430.
    [21] Paul R. Beger, “MSM photodiodes ” IEEE Potentials, vol. 15, pp. 25-29, 1996.
    [22] Shahin K. Shaikh, Sumayya I. Inamdar, Vinayak V. Ganbavle and Kesu Y. Rajpure, “Chemical bath deposited ZnO thin film based UV photoconductive detector,” Journal of Alloys and Compounds, vol. 664, pp. 242–249, 2016.
    [23] Pankaj Sharma, Rohit Singh, Vishnu Awasthi, Sushil K. Pandey, Vivek Garga and Shaibal Mukherjee, “Detection of a high photoresponse at zero bias from a highly conducting ZnO : Ga based UV photodetector,” RSC Advances, vol. 5, pp. 85523–85529, 2015.
    [24] P.S. Shewale, N.K. Lee, S.H. Lee and Y.S. Yu, “Physical and UV photodetection properties of pulsed laser deposited Mg0.05 Zn0.95O thin films : Effect of oxygen pressure,” Journal of Alloys and Compounds, vol. 640, pp. 525–533, 2015.
    [25] Shima Mohammadi and Mahdi Zavvari, “High performance n -ZnO / p -metal-oxides UV detector grown in low-temperature aqueous solution bath,” Thin Solid Films, vol. 626, pp. 173–177, 2017.
    [26] X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei and W. H. Tang, “b-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” Journal of Alloys and Compounds, vol. 660, pp. 136–140, 2016.
    [27] Malkeshkumar Patel, Hong-Sik Kim and Joondong Kim, “All Transparent Metal Oxide Ultraviolet Photodetector,” Advanced Electronic Materials, vol. 1, p. 1500232, 2015.
    [28] Yu-Jen Hsiao, Liang-Wen Ji, Hao-Ying Lu, Te-Hua Fang and Kai-Hua Hsiao, “High Sensitivity ZnO Nanorod-Based Flexible Photodetectors Enhanced by CdSe / ZnS Core-Shell Quantum Dots,” IEEE Sensors Journal, vol. 17, pp. 3710-3713, 2016.
    [29] Noushin Nasiri, Renheng Bo, Fan Wang, Lan Fu and Antonio Tricoli, “Ultraporous Electron-Depleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visible-Blind UV Photodetectors,” Advanced Materials, vol. 27, pp. 4336–4343, 2015.
    [30] Fang Yi, Qingliang Liao, Xiaoqin Yan, Zhiming Bai, Zengze Wang, Xiang Chen, Qi Zhang, Yunhua Huang and Yue Zhang, “Simple fabrication of a ZnO nanorod array UV detector with a high performance,” Physica E: Low-dimensional Systems and Nanostructures, vol. 61, pp. 180–184, 2014.
    [31] Yiyu Zhang, Ling-Xuan Qian, Zehan Wu and Xingzhao Liu, “Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity,” Materials, vol. 10, 2017.
    [32] Huiling Lu, Xiaobin Bi, Shengdong Zhang and Hang Zhou, “Ultraviolet detecting properties of amorphous MgInO thin film phototransistors,” Semiconductor Science and Technology, vol. 30, p. 125010, 2015.
    [33] Reza Soleimanzadeh, Mohammadreza Kolahdouz, Mohammad A. Charsooghi, Zahra Kolahdouz and Kouchi Zhang, “Highly selective and responsive ultra-violet detection using an improved phototransistor,” Applied Physics Letters, vol. 106, p. 231102, 2015.
    [34] Mohsen Shariati and Sahel Alishavandi, “Phototransistor Properties of Indium Tin Oxide Nanowires Grown by RF Sputtering Mechanism and Annealing Process,” NANO: Brief Reports and Reviews, vol. 10, p. 1550006, 2015.
    [35] Pichaya Pattanasattayavong, Stephan Rossbauer, Stuart Thomas, John G. Labram, Henry J. Snaith and Thomas D. Anthopoulos, “Solution-processed dye-sensitized ZnO phototransistors with extremely high photoresponsivity Solution-processed dye-sensitized ZnO phototransistors with extremely high photoresponsivity,” Journal of Applied Physics, vol. 112, p. 074507, 2012.
    [36] Alexander D. Mottram, Yen-Hung Lin, Pichaya Pattanasattayavong, Kui Zhao, Aram Amassian, and Thomas D. Anthopoulos, “Quasi Two-Dimensional Dye-Sensitized In2O3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications,” ACS Applied Materials & Interfaces, vol. 8, pp. 4894−4902, 2016.
    [37] Jaehyun Yang, Hyena Kwak, Youngbin Lee, Yu-Seon Kang, Mann-Ho Cho, Jeong Ho Cho, Yong-Hoon Kim, Seong-Jun Jeong, Seongjun Park, Hoo-Jeong Lee and Hyoungsub Kim, “MoS2−InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity” ACS Applied Materials & Interfaces, vol. 8, pp. 8576−8582, 2016.
    [38] Seung Won Shin, Kwang-Ho Lee, Jin-Seong Park and Seong Jun Kang, “Highly Transparent , Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots,” ACS Applied Materials & Interfaces, vol.7, pp. 19666−19671, 2015.
    [39] Zingway Pei, Hsin-Cheng Lai, Jian-Yu Wang, Wei-Hung Chiang and Chien-Hsun Chen, “High-Responsivity and High-Sensitivity Graphene Dots/a-IGZO Thin-Film Phototransistor,” IEEE Electron Device Letters, vol. 36, pp. 44–46, 2015.
    [40] Hsiao-Wen Zan, Wei-Tsung Chen, Hsiu-Wen Hsueh, Shih-Chin Kao, Ming-Che Ku, Chuang-Chuang Tsai and Hsin-Fei Meng, “Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer,” Applied Physics Letters, vol. 97, p. 203506, 2010.
    [41] Willem den Boer, IMAGE SENSOR WITH PHOTOSENSITIVE THIN FILM TRANSISTORS AND DARK CURRENT COMPENSATION, U.S. Patent 6,831,710 B2, December 14, 2004
    [42] Abbas El Gamal and Helmy Eltoukhy, “CMOS IMAGE SENSORS,” IEEE Circuits and Devices Magazine, vol. 21, pp. 6-20, 2005.
    [43] Dave Litwiller, “CCD vs . CMOS : Facts and Fiction,” Photonics Spectra, vol.35, pp. 154-158, 2001.
    [44] Seung-eon Ahn, Sanghun Jeon, Ihun Song, Yongwoo Jeon, Young Kim, Changjung Kim, Junhyung Lim, Wooho Jeong, Joonchul Goh, Seongjin Yeon, Cheolgon Lee, Jong-hee Kim, Je-hun Lee, Junho Song, Arokia Nathan, Sungsik Lee, U-in Chung, “25.2 : Photo-Sensor Thin Film Transistor based on Double Metal-Oxide Layer for In-cell Remote Touch Screen,” SID Symposium Digest of Technical Papers, vol.43, pp. 334-337 , 2015.
    [45] Xingqiang Liu, Lang Jiang, Xuming Zou, Xiangheng Xiao, Shishang Guo, Changzhong Jiang, Xi Liu, Zhiyong Fan, Weida Hu, Xiaoshuang Chen , Wei Lu, Wenping Hu and Lei Liao, “Scalable Integration of Indium Zinc Oxide / Photosensitive- Nanowire Composite Thin-Film Transistors for Transparent Multicolor Photodetectors Array,” Advanced Materials, vol.26, pp. 2919-2924, 2014.
    [46] Kohjiro Hara, Takaro Horiguchi, Tohru Kinoshita, Kazuhiro Sayama, Hideki Sugihara, Hironori Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Solar Energy Materials & Solar Cells, vol. 64, pp. 115–134, 2000.
    [47] E. Guillen, F. Casanueva, J.A. Anta, A. Vega-Poot, G. Oskam, R. Alcantara, C. Fernandez-Lorenzo, J. Martin-Calleja, “Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 200, pp. 364–370, 2008.
    [48] Janitabar Darzi Simin and Movahedi Maryam, “Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye : A Mechanistic Investigation,” Iranian Journal of Chemistry and Chemical Engineering, vol. 33, pp. 55–64, 2014.
    [49] Youngmin Jeong, Changdeuck Bae, Dongjo Kim, Keunkyu Song, Kyoohee Woo, Hyunjung Shin, Guozhong Cao and Jooho Moon, “Bias-Stress-Stable Solution-Processed Oxide Thin Film Transistors,” ACS Applied Materials & Interfaces, vol. 2, pp. 611–615, 2010.
    [50] Hyun Soo Lim, You Seung Rim, Dong Lim Kim, Woong Hee Jeong and Hyun Jae Kim, “Carrier-Suppressing Effect of Mg in Solution-Processed Zn-Sn-O Thin-Film Transistors,” Electrochemical and Solid-State Letters, vol. 15, pp. H78-H80, 2012.
    [51] Keon-Hee Lim, Kyongjun Kim, Seonjo Kim, Si Yun Park, Hyungjun Kim and Youn Sang Kim, “UV – Visible Spectroscopic Analysis of Electrical Properties in Alkali Metal-Doped Amorphous Zinc Tin Oxide Thin-Film Transistors,” Advanced Materials, vol. 25, pp. 2994–3000, 2013.
    [52] Seok-Jun Seo, Young Hwan Hwang, and Byeong-Soo Baez, “Postannealing Process for Low Temperature Processed Sol – Gel Zinc Tin Oxide Thin Film Transistors,” Electrochemical and Solid-State Letters, vol.13, pp.H357-H359, 2010.
    [53] You Seung Rim, Dong Lim Kim, Woong Hee Jeong, and Hyun Jae Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Applied Physics Letters, vol. 97, p. 233502, 2010.
    [54] Anderson Janotti and Chris G. Van de Walle, “Oxygen vacancies in ZnO,” Applied Physics Letters, vol. 87, p. 122102, 2005.
    [55] You Seung Rim, Wooho Jeong, Byung Du Ahn and Hyun Jae Kim, “Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing,” Applied Physics Letters, vol. 102, p. 143503, 2015.
    [56] Li-Chih Liu, Jen-Sue Chen and Jiann-Shing Jeng, “Ambient Constancy of Passivation-Free Ultra-Thin Zinc Tin Oxide Thin Film Transistor,” ECS Solid State Letters, vol. 4, pp. Q59–Q62, 2015.
    [57] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama and H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells,” Solar Energy Materials & Solar Cells, vol. 70, pp. 151–161, 2001.

    無法下載圖示 校內:2022-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE