| 研究生: |
卓佾輝 Zhuo, Yi-Hui |
|---|---|
| 論文名稱: |
高溫W-TiC多層太陽能選擇性吸收膜 High temperature W-TiC Multilayer Solar Selective Coatings |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 碳化鈦 、鎢 、太陽能選擇性吸收膜 、瓷金材料 、反應式磁控濺鍍 |
| 外文關鍵詞: | Titanium carbide, solar selective coating, cermet, reactive magnetron sputtering |
| 相關次數: | 點閱:138 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了研究高溫型太陽能選擇性吸收膜(High temperature SSC),吾人利用反應式磁控濺鍍設備,成功沈積添加金屬鎢的碳化鈦薄膜在不鏽鋼基板上,其中以甲烷作為反應氣體,而鎢靶和鈦靶分別以RF和DC電源供應器濺射。薄膜中的鎢含量,以鎢靶功率大小進行調控。分析包括XRD繞射、Raman吸收光譜、SEM表面形貌、TEM高解析截面、反射率光譜以及折射率,在其光學效能最佳化的同時,亦研究了其鎢靶功率對材料性質的關聯性。探討在鎢靶功率不同時,其結晶性、結構對於光學性質的影響。
在漸層式雙層以及抗反射層的添加後,完整的結構為四層:SS/ W/ HM W-TiC/ LM W-TiC/ HfO2,在最佳化後,太陽能吸收率高達94.8%,且熱放射率僅有9.7%,太陽能選擇性高達9.77。除此之外,熱穩定性的研究以空氣下退火來進行,在相同的退火時間之下,以調控不同退火溫度,來展現不同高溫環境之下,該薄膜的穩定程度。在2小時700°C的退火之後,此SSC仍能表現出93.2%的高吸收率,以及9.8%的熱放射率,且並無其他相生成,足以說明其極佳的熱穩定性。
Tungsten-embedded titanium carbide (W-TiC) cermet solar selective coatings were deposited on the stainless steel substrates by using DC and RF reactive magnetron co-sputtering. Different W content was controlled by varying the W target power. The correlation between W embedding quantity and material characteristics (i.e. XRD pattern, Raman spectrum, SEM morphology, TEM cross section and reflectance spectrum) were investigated. The whole multilayer: SS/ W/ HM W-TiC/ LM W-TiC/ HfO2 was deposited and achieve 94.8% of absorptance and 9.8% of emittance (at 100°C). The thermal stability was studied by annealing process in air at different temperature (i.e. 600°C, 700°C and 800°C) for 2 hours. By measuring the XRD and reflectance spectrum, It is confirmed that the thermal stability of the whole multilayer was up to 700°C in air.
1. Abbott, D., Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? Proceedings of the IEEE, 2010. 98(1): p. 42-66.
2. IEA (2019), R., IEA, Paris https://www.iea.org/reports/renewables-2019.
3. Tabor, H., Selective radiation I. Wavelength discrimination. Bull. Res. Counc. of Isr. Sect. A: Chem, 1956. 5: p. 119-128.
4. Karp, J., Concentrating solar power: progress and trends. Jacobs School of Engineering, University of California San Diego, Triton SPIE/OSA, 2009.
5. Fuqiang, W., et al., Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 2017. 79: p. 1314-1328.
6. Bermel, P., et al., Selective solar absorbers. Annual Review of Heat Transfer, 2012. 15.
7. Cao, F., et al., A review of cermet-based spectrally selective solar absorbers. Energy & Environmental Science, 2014. 7(5): p. 1615-1627.
8. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297.
9. Fan, J.C. and S.A. Spura, Selective black absorbers using rf‐sputtered Cr2O3/Cr cermet films. Applied Physics Letters, 1977. 30(10): p. 511-513.
10. Teixeira, V., et al., Spectrally selective composite coatings of Cr–Cr2O3 and Mo–Al2O3 for solar energy applications. Thin Solid Films, 2001. 392(2): p. 320-326.
11. Nunes, C., et al., Graded selective coatings based on chromium and titanium oxynitride. Thin Solid Films, 2003. 442(1-2): p. 173-178.
12. Yin, Y., et al., Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications. Thin Solid Films, 2009. 517(5): p. 1601-1606.
13. Cheng, J., et al., Improvement of thermal stability in the solar selective absorbing Mo–Al2O3 coating. Solar energy materials and solar cells, 2013. 109: p. 204-208.
14. Barshilia, H.C., et al., Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1707-1715.
15. Antonaia, A., et al., Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature. Solar Energy Materials and Solar Cells, 2010. 94(10): p. 1604-1611.
16. Xinkang, D., et al., Microstructure and spectral selectivity of Mo–Al2O3 solar selective absorbing coatings after annealing. Thin Solid Films, 2008. 516(12): p. 3971-3977.
17. Zhang, Q.-C., Direct current magnetron sputtered W–AlN cermet solar absorber films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(6): p. 2842-2846.
18. Nishimura, M. and T. Ishiguro, Solar selective absorber coating composed of aluminum and nitrogen with high performance induced by surface roughness. Japanese journal of applied physics, 2004. 43(2R): p. 757.
19. Esposito, S., et al., Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature. Thin Solid Films, 2009. 517(21): p. 6000-6006.
20. Zhang, K., et al., A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renewable and Sustainable Energy Reviews, 2017. 67: p. 1282-1299.
21. Wuchina, E., et al., UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. The Electrochemical Society Interface, 2007: p. 30.
22. Coulibaly, M., et al., From colloidal precursors to metal carbides nanocomposites MC (M= Ti, Zr, Hf and Si): synthesis, characterization and optical spectral selectivity studies. Solar Energy Materials and Solar Cells, 2015. 143: p. 473-479.
23. Sigrist, M., et al., PROPRIETES OPTIQUES DES NITRURES ET CARBONITRURES DE TITANE-SELECTIVITE SPECTRALE. Le Journal de Physique Colloques, 1981. 42(C1): p. C1-453-C1-463.
24. Gao, X.-H., et al., Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating. Solar Energy Materials and Solar Cells, 2016. 157: p. 543-549.
25. Gao, X.-H., et al., Enhanced thermal stability and spectral selectivity of SS/TiC-Y/Al2O3 spectrally selective solar absorber by thermal annealing. Solar Energy, 2016. 140: p. 199-205.
26. Wei, Q., et al., High temperature spectral selective TiC-Ni/Mo cermet-based coatings for solar thermal systems by laser cladding. Solar Energy, 2018. 171: p. 247-257.
27. Gruber, D., et al., Modeling the absorption behavior of solar thermal collector coatings utilizing graded α-C: H/TiC layers. Applied optics, 2009. 48(8): p. 1514-1519.
28. Signore, M., A. Sytchkova, and A. Rizzo, Sputtering deposition and characterization of tandem absorbers for photo-thermal systems operating at mid temperature. Optical Materials, 2011. 34(1): p. 292-297.
29. Gao, X.-H., et al., Microstructure, chromaticity and thermal stability of SS/TiC-WC/Al2O3 spectrally selective solar absorbers. Solar Energy Materials and Solar Cells, 2017. 164: p. 63-69.
30. Gao, X.-H., et al., Structure, optical properties and thermal stability of SS/TiC–ZrC/Al 2 O 3 spectrally selective solar absorber. RSC advances, 2016. 6(68): p. 63867-63873.
31. Berghaus, A., A. Djahanbakhsh, and L. Thomas, Characterisation of CVD-tungsten–alumina cermets for high-temperature selective absorbers. Solar Energy Materials and Solar Cells, 1998. 54(1-4): p. 19-26.
32. Ordal, M.A., et al., Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Applied optics, 1988. 27(6): p. 1203-1209.
33. Selvakumar, N. and H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar energy materials and solar cells, 2012. 98: p. 1-23.
34. Cao, F., et al., Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors. Advanced Energy Materials, 2015. 5(2): p. 1401042.
35. Wang, X., et al., High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity. Nano Energy, 2017. 37: p. 232-241.
36. Shaha, K., et al., Influence of hardness and roughness on the tribological performance of TiC/aC nanocomposite coatings. Surface and Coatings Technology, 2010. 205(7): p. 2624-2632.
37. Ritala, M., et al., Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy. Thin Solid Films, 1994. 250(1-2): p. 72-80.
38. Al-Kuhaili, M., Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Optical Materials, 2004. 27(3): p. 383-387.
39. Bronson, A., et al., Compatibility of refractory metal boride/oxide composites at ultrahigh temperatures. Journal of the Electrochemical Society, 1992. 139(11): p. 3183.
40. Selvakumar, N., et al., Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. Solar Energy Materials and Solar Cells, 2010. 94(8): p. 1412-1420.
41. Li, C.-Y., F.N.I. Sari, and J.-M. Ting, Reactive magnetron sputter-deposited TiNxOy multilayered solar selective coatings. Solar Energy, 2019. 181: p. 178-186.
42. Bellardita, M., et al., Preparation of Catalysts and Photocatalysts Used for Similar Processes, in Heterogeneous Photocatalysis. 2019, Elsevier. p. 25-56.
43. Li, K., et al., Preparation of AlN thin films for film bulk acoustic resonator application by radio frequency sputtering. Journal of Zhejiang University-Science A, 2009. 10(3): p. 464-470.
44. Chapman, B.N., Glow discharge processes: sputtering and plasma etching. 1980: Wiley.
45. Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 3059-3065.
46. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
47. Inkson, B., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. 2016, Elsevier. p. 17-43.
48. Horwat, D. and A. Billard, Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering. Thin Solid Films, 2007. 515(13): p. 5444-5448.
49. Kumar, N., et al., Microstructure and phase composition dependent tribological properties of TiC/aC nanocomposite thin films. Surface and Coatings Technology, 2014. 258: p. 557-565.
50. Soldán, J. and J. Musil, Structure and mechanical properties of DC magnetron sputtered TiC/Cu films. Vacuum, 2006. 81(4): p. 531-538.
51. Sánchez-López, J.C., et al., Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: from macro to the micro-scale. Surface and Coatings Technology, 2008. 202(16): p. 4011-4018.
52. Djafer, A.Z.A., et al., Deposition and characterization of titanium carbide thin films by magnetron sputtering using Ti and TiC targets. Applied surface science, 2014. 312: p. 57-62.
53. Jackson, A.W., et al., Amorphous and nanocrystalline titanium nitride and carbonitride materials obtained by solution phase ammonolysis of Ti (NMe2) 4. Journal of Solid State Chemistry, 2006. 179(5): p. 1383-1393.
54. Dreiling, I., D. Stiens, and T. Chassé, Raman spectroscopy investigations of TiBxCyNz coatings deposited by low pressure chemical vapor deposition. Surface and Coatings Technology, 2010. 205(5): p. 1339-1344.
55. Trotter, D. and A. Sievers, Spectral selectivity of high-temperature solar absorbers. Applied optics, 1980. 19(5): p. 711-728.