| 研究生: |
謝可盈 Hsieh, Ke-Ying |
|---|---|
| 論文名稱: |
探討第四型線毛在困難梭狀芽孢桿菌致病過程所扮演角色 The Contribution of Type IV Pili in Clostridium difficile pathogenesis |
| 指導教授: |
黃一修
Huang, I-Hsiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 困難梭狀芽孢桿菌 、抗生素相關腹瀉 、第四型線毛 |
| 外文關鍵詞: | Clostridium difficile, antibiotic-associated diarrhea, type Ⅳ pili |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
困難梭狀芽孢桿菌(Clostridium difficile)是革蘭氏陽性且會產生孢子的厭氧菌,也是院內感染中抗生素相關腹瀉的重要致病菌,能藉著孢子型態散播在環境,經由糞口途徑進入宿主腸道當中 。近年研究發現在此種細菌的細胞壁上有第四型線毛(Type IV pili)的蛋白結構, 已知它的功能跟細菌的自我聚集 (Auto-aggregation)、滑行運動 (Gliding motility)及生物膜(Biofilm formation)形成有關,然而,第四型線毛在困難梭狀芽孢桿菌的致病過程中扮演的角色還不清楚。在我們的研究中,我們利用修改後的 Clostron 方法將第四型線毛的線毛蛋白基因 pilA1 (major pilin)及收縮 ATP 蛋白酶基因 pilT(putative retraction ATPase) 進行插入性突變,藉此比較野生株以及突變株之間的差異,我們發現在小鼠感染模式中,菌株R20291第四型線毛的突變株會造成小鼠比較嚴重的發炎反應,為了找出突變型毒力上升的可能原因,我們利用 Caco-2 細胞的感染實驗,也發現R20291的第四型線毛收縮ATP蛋白酶基因pilT突變株呈現較高的細胞貼附能力,我們推測可能是因為細菌失去了收縮的能量來源而導致線毛無法收縮,因此有較高的機會能貼附到細胞上,因此R20291第四型線毛在細菌定殖腸道的過程扮演了一個角色且能促進細菌貼附的能力。另外,我們同時分析R20291以及630這兩種不同的菌株,第四型線毛野生株和突變株在細菌自我聚集、滑行運動以及生物膜形成的這些功能差異。在我們的結果中,我們發現R20291 的第四型線毛突變型會有較高的自我聚集能力,但是630第四型線毛突變型菌株則相反,而在滑行運動中,R20291的第四型線毛突變型是呈現較低的移動能力,因此我們認為第四型線毛在困難梭狀芽孢桿菌R20291中能促使細菌進行滑行運動。綜合以上結果,我們發現第四型線毛的表達在R20291及630當中可能不盡相同,但我們仍證實了R20291第四型線毛在困難梭狀芽孢桿菌的致病過程中,能透過使細菌貼附在宿主細胞上而讓細菌定殖在腸道中,並且也能透過線毛的收縮來達成滑行運動的功能。
Clostridium diffcile is a Gram-positive spore-forming anaerobic bacterium. It is the leading cause of antibiotic-associated diarrhea in nosocomial infection and the transmission is through fecal-oral route. Recently type IV pili (TFP), a proteinaceous polymer widely studied in many gram-negative pathogens was discovered to be produced by C. difficile and has been reported to promote bacterial auto-aggregation, gliding motility, and biofilm formation. However, the role that TFP plays in C. difficile pathogenesis is still unclear. In our study, TFP structural genes pilA1 (major pilin) and pilT (putative retraction ATPase) were inactivated using a modified ClosTron targeting system. To determine the role of TFP in pathogenesis in vivo, a mouse model of infection was established. We were surprised to find that in strain R20291, TFP mutants were more virulent in mouse model of infection. Furthermore, in vivo and in vitro results demonstrated that pilT mutant had higher adhesion efficiency than wild-type. We surmised that in strain R20291, inactive PilT might lead to longer pili formation because pili lost its energy to retract. Therefore, we speculated that TFP might promote adherence in C. difficile R20291 to help colonize in host intestine. Further investigation of the function of TFP in aggregation, biofilm formation, gliding motility, we used both strain R20291 and 630 to demonstrate it. In strain R20291, TFP mutant showed higher aggregation efficiency and a decreased gliding motility phenotype. However, in strain 630, aggregation efficiency of TFP mutants was lower. Together, our results showed that TFP mediated phenotypes might be different in strain R20291 and 630 and we demonstrated that type IV pili is important in CDI and may promote adherence in the process of pathogenesis in strain R20291.
1. Michael C. Abt, Peter T. McKenney, and Eric G. Pamer 2016 Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 14(10): 609–620.
2. Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang YW, Sun X 2017 Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol. 55(7):1998-2008.
3. Latisha Heinlen, and Jimmy D. Ballard 2010 Clostridium difficile Infection. Am J Med Sci. 340(3): 247–252.
4. Stabler RA, He M, Dawson L, Martin M, Wren BW. 2009 Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10(9):R102.
5. Bo-Yang Tsai, Wen-Chien Ko, Yuan-Pin Hung, Pei-Jane Tsai 2016 Zoonotic potential of the Clostridium difficile RT078 family in Taiwan. Anaerobe. 41:125-130.
6. Claire Nour Abou Chakra, Jacques Pepin, Stephanie Sirard, Louis Valiquette 2015 Risk factors for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 36(4):452-460.
7. Watson RL, Graber CJ 2018 Lack of improvement in antimicrobial prescribing after a diagnosis of Clostridium difficile and impact on recurrence. Am J Infect Control.
8. Barbut F, Richard A, Hamadi K, Chomette V, Burghoffer B, Petit JC 2000 Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. J Clin Microbiol. 38(6):2386-2388.
9. Olsen MA, Yan Y, Reske KA, Zilberberg MD, Dubberke ER 2015 Recurrent Clostridium difficile infection is associated with increased mortality. Clin Microbiol Infect. 21(2):164-170.
10. Dupont HL 2013 Diagnosis and management of Clostridium difficile infection. Clin Gastroenterol Hepatol.11(10):1216-1223
11. Ann K. Seltman, MD 2012 Surgical Management of Clostridium difficile Colitis. Clin Colon Rectal Surg. 25(4): 204–209.
12. Iqbal U, Anwar H, Karim MA 2018 Safety and efficacy of encapsulated fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review. Eur J Gastroenterol Hepatol. 30(7):730-734.
13. Robert Hasty, Vincenzo Barbato, Pedro Valdes, Christopher Sitler 2013 Clostridium difficile colitis, treatment and management Curr Emerg Hosp Med Rep 1:141–144
14. Khalid M. Aljarallah 2017 Conventional and alternative treatment approaches for Clostridium difficile infection. Int J Health Sci (Qassim). 11(1): 1–10.
15. Yang HT, Chen JW, Rathod J, Jiang YZ, Tsai PJ, Hung YP, Ko WC, Paredes-Sabja D, Huang IH 2018 Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front Microbiol. 8:2635.
16. Leuzzi R, Adamo R, Scarselli M 2014 Vaccines against Clostridium difficile. Hum Vaccin Immunother. 10(6):1466-1477.
17. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ 2017 Clostridium difficile infection. Nat Rev Dis Primers. 2:16020.
18. Milena M Awad, Priscilla A Johanesen, Dena Lyras 2014 Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 5(5):579-593.
19. Merrigan MM, Venugopal A, Vedantam G. 2013 Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One. 8(11):e78404.
20. Dingle KE, Didelot X, Crook DW 2013 Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect Dis. 207(4):675-686.
21. Kirby JM, Ahern H, Roberts AK, Kumar V, Freeman Z, Acharya KR, Shone CC. 2009 Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem. 284(50):34666-34673.
22. Janoir C1, Péchiné S, Grosdidier C, Collignon A. 2007 Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J Bacteriol. 189(20):7174-7180.
23. Soza T. Baban, Sarah A. Kuehne, Nigel P. Minton 2013 The Role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. PLoS One. 8(9): e73026.
24. Daniel E. Voth, Jimmy D. Ballard 2005 Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 18(2): 247–263.
25. Stefano Di Bella, Paolo Ascenzi, Steven Siarakas, Nicola Petrosillo, and Alessandra di Mas 2016 Clostridium difficile toxins A and B: insights into pathogenic properties and extraintestinal effects. Toxins (Basel). 8(5):134
26. Joseph A. Kirk, Oishik Banerji, and Robert P. Fagan 2017 Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol. 10(1): 76–90.
27. Bradley DE. 1972 Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem Biophys Res Commun. 47(1):142-149.
28. Proft T, Baker EN 2009 Pili in Gram-negative and Gram-positive bacteria structure, assembly and their role in disease. Cell Mol Life Sci. 66(4):613-35.
29. Piepenbrink KH, Sundberg EJ 2016 Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans. 44(6):1659-1666.
30. Gurung I, Spielman I, Davies MR, Lala R, Gaustad P, Biais N, Pelicic V 2016 Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis. Mol Microbiol. 99(2):380-392.
31. Stephen Melville, Lisa Craig 2013 Type IV pili in Gram-positive bacteria. Microbiol Mol Biol Rev. 77(3): 323–341.
32. Kurt H. Piepenbrink, Grace A. Maldarelli, Michael S. Donnenberg, and Eric J. Sundberg 2015 Structural and evolutionary analyses show unique stabilization strategies in the Type IV pili of Clostridium difficile. Structure. 23(2): 385–396.
33. Mattick JS 2002 Type IV pili and twitching motility. Annu Rev Microbiol. 56:289-314.
34. Vladimir Jakovljevic, Simone Leonardy, Michael Hoppert, and Lotte Søgaard-Andersen 2008 PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol. 190(7): 2411–2421.
35. Sandra Muschiol, Murat Balaban, Staffan Normark, and Birgitta Henriques-Normark 2015 Uptake of extracellular DNA: Competence induced pili in natural transformation of Streptococcus pneumonia. Bioessays. 37(4): 426–435.
36. Brooke A. Jude1 and Ronald K. Taylor 2011 The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J Struct Biol. 175(1): 1–9.
37. Erin B. Purcell, Robert W. McKee, Shonna M. McBride, Christopher M. Waters, and Rita Tamayo 2012 Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol. 194(13): 3307–3316.
38. Erin B. Purcell, Robert W. McKee, Eric Bordeleau, Vincent Burrus, and Rita Tamayo 2016 Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile. J Bacteriol. 198(3): 565–577.
39. Grace A. Maldarelli, Kurt H. Piepenbrink,Alison J. Scott, Michael S. Donnenberg, and Erik C. von Rosenvinge 2016 Type IV pili promote early biofilm formation by Clostridium difficile. Pathog Dis. 74(6): ftw061.
40. Dingle KE, Didelot X, Ansari MA, Eyre DW, Vaughan A, Griffiths D, Ip CL, Batty EM, Golubchik T, Bowden R, Jolley KA, Hood DW, Fawley WN, Walker AS, Peto TE, Wilcox MH, Crook DW. 2013 Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect Dis. 207(4):675-686.
41. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP 2010 The ClosTron: Mutagenesis in Clostridium refined and streamlined. J Microbiol Methods. 80(1):49-55
42. Perutka J, Wang W, Goerlitz D, Lambowitz AM 2004 Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol. 336(2):421-439.
43. Kelly ML, Ng YK, Cartman ST, Collery MM, Cockayne A, Minton NP 2016 Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection. Anaerobe. 39:51-53.
44. Tim Du, MSc and Michelle J Alfa 2004 Translocation of Clostridium difficile toxin B across polarized Caco-2 cell monolayers is enhanced by toxin A. Can J Infect Dis. 15(2): 83–88.
45. Vijay K. Sharma, Indira T. Kudva, Bradley L. Bearson, and Judith A. Stasko Contributions of EspA filaments and curli fimbriae in cellular adherence and biofilm formation of enterohemorrhagic Escherichia coli O157:H7. PLoS One. 11(2): e0149745.
46. David Lebeaux, Jean-Marc Ghigo, and Christophe Beloin 2014 Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 78(3): 510–543.
47. Ekaterina G. Semenyuk, Michelle L. Laning, and Adam Driks 2014 Spore formation and toxin production in Clostridium difficile biofilms. PLoS One. 9(1): e87757.
48. Daniel R. Knight, Briony Elliott, Barbara J. Chang, Timothy T. Perkins, and Thomas V. Riley 2015 Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 28(3): 721–741.
49. Grace A Maldarelli, Hanover Matz, and Michael S Donnenberg 2016 Pilin vaccination stimulates weak antibody responses and provides no protection in a C57Bl/6 murine model of acute Clostridium difficile infection. J Vaccines Vaccin. 7(3): 321.
50. Grace A. Maldarelli, Leon De Masi, Erik C. von Rosenvinge, Mihaela Carter, and Michael S. Donnenberg 2014 Identification, immunogenicity and crossreactivity of type IV pilin and pilin-like proteins from Clostridium difficile. Pathog Dis. 71(3): 302–314.
51. McKee RW, Aleksanyan N, Garrett EM, Tamayo R 2018 Type IV pili promote Clostridium difficile adherence and persistence in a mouse model of infection. Infect Immun. 86(5). e00943-17.
52. Eriksen RS, Svenningsen SL, Sneppen K, Mitarai N 2018 A growing microcolony can survive and support persistent propagation of virulent phages. Proc Natl Acad Sci. 115(2):337-342.
53. Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R, Burrus V 2015 Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol. 197(5):819-832.
54. Catherine B. Reynolds, Jenny E. Emerson, Lucia de la Riva, Robert P. Fagan, and Neil F. Fairweather 2011 The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function. PLoS Pathog. 7(4): e1002024.
55. Dannheim H, Riedel T, Neumann-Schaal M, Bunk B, Schober I, Spröer C, Chibani CM, Gronow S, Liesegang H, Overmann J, Schomburg D 2017 Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630. J Med Microbiol. 66(3):286-293.
56. Williams DR, Young DI, Young M 1990 Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol. 136(5):819-826.
57. J A Lindsay, T C Beaman, and P Gerhardt 1985 Protoplast water content of bacterial spores determined by buoyant density sedimentation. J Bacteriol. 163(2): 735–737.
58. Yi-Tzu Lin (林怡慈) and I-Hsiu, Huang 2015 Functional Characterization of a putative Type Ⅳ Pilus gene cluster in Clostridium difficile. Master's thesis of department of microbiology and immunology, National Cheng Kung University
59. Fairley DJ, McKenna JP, Stevenson M, Weaver J, Gilliland C, Watt A, Coyle PV 2015 Association of Clostridium difficile ribotype 078 with detectable toxin in human stool specimens. J Med Microbiol. 64(11):1341-1345.
60. Hung YP, Huang IH, Lin HJ, Tsai BY, Liu HC, Liu HC, Lee JC, Wu YH, Tsai PJ, Ko WC 2016 Predominance of Clostridium difficile ribotypes 017 and 078 among toxigenic clinical isolates in southern Taiwan. PLoS One. 11(11):e0166159.
61. Sorg JA, Dineen SS 2009 Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol. Chapter 9
62. Charles A Janeway, Jr, Paul Travers, Mark Walport, and Mark J Shlomchik. Integrated dynamics of innate and adaptive immunity. Immunobiology, 9th edition Chapter 11
63. Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A 2004 Innate immune response in Th1- and Th2-dominant mouse strains. Shock. 22(5):460-466.
64. Harald Nothaft and Christine M. Szymanski 2010 Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol. 8(11):765-778
65. Hanjeong Harvey, Joseph Bondy-Denomy, Hélène Marquis, Kristina M. Sztanko Alan R. Davidson and Lori L. Burrows 2018 Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat Microbiol. 3(1):47-52.
66. Karczewski J, Zorman J, Wang S, Miezeiewski M, Xie J, Soring K, Petrescu I, Rogers I, Thiriot DS, Cook JC, Chamberlin M, Xoconostle RF, Nahas DD, Joyce JG, Bodmer JL, Heinrichs JH, Secore S 2014 Development of a recombinant toxin fragment vaccine for Clostridium difficile infection. Vaccine. 32(24):2812-2818.
67. Chandrabali Ghose, Ioannis Eugenis, Xingmin Sun, Adrianne N Edwards, Shonna M McBride, David T Pride, Ciarán P Kelly, and David D Ho 2016 Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg Microbes Infect. 5:e8.
68. Sarah A. Kuehne and Nigel P. Minton 2012 ClosTron-mediated engineering of Clostridium. Bioengineered. 3(4):247-254.
69. McBride SM1, Sonenshein AL 2011 Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile. Infect Immun. 79(1):167-176.
70. Heap JT, Pennington OJ, Cartman ST, Minton NP 2009 A modular system for Clostridium shuttle plasmids. J Microbiol Methods. 78(1):79-85.
校內:2023-12-31公開