簡易檢索 / 詳目顯示

研究生: 盧羿婷
Lu, Yi-Ting
論文名稱: 金屬矽酸鹽孔洞材料之合成與鑑定
Synthesis and Characterization of Porous Metal Silicate Materials
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 金屬矽酸鹽孔洞材料氧化矽剝蝕法共沉降法
外文關鍵詞: metal silicate, silicate-exfoliation, co-precipitation
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別以Mn2+及Zn2+為主要的金屬離子前驅物,矽酸鈉為氧化矽的來源,透過氧化矽剝蝕法和共沉降法製備出金屬矽酸鹽孔洞材料。兩種實驗手法都類似於一鍋化合成的概念。氧化矽剝蝕法會先利用鹼源使金屬離子轉變成金屬沉澱物,接著再與矽酸鈉水溶液互相混合;共沉降法則是將金屬離子水溶液加進高鹼性的矽酸鈉水溶液中,過程會產生分散度高的金屬沉澱物與非晶相的氧化矽。兩種手法在後續皆藉由100℃水熱所提供的能量,使前驅物互相拆解再重組,最後形成金屬矽酸鹽孔洞材料,並以數種儀器鑑定其基本性質。
    氧化矽剝蝕法合成manganese-silicate的部分,本論文嘗試以放大製程的方式來製備。經由重新微調實驗參數的範圍,並將原料由試藥級更換成工業級後,成功將產量從1 g增加至10 g,產物的外觀仍保持泡泡狀構形,表面積亦維持在500 m2g-1左右,也達到節省成本之目的。泡泡狀的manganese-silicate可再藉由甲酸酸洗及螯合dopamine的方式,推測出實際結構是由一層氧化矽在外側、一層氧化錳在內側所排列而成。然而,氧化矽剝蝕法所製備的manganese-silicate,存在著少許前驅物殘留以及實驗參數範圍較狹窄等缺點,於是本實驗室開發出共沉降法以期能改善上述問題。共沉降法可得到組成均勻、具有微孔尺度的孔洞且外觀為不規則片狀的manganese-silicate,表面積約450 m2g-1。由於manganese-silicate幾乎沒有任何未作用完的前驅物殘留(例如:氫氧化錳、氧化矽),因此便提供了引入其他金屬離子的可能性。本論文選擇鈰離子作為第二種金屬離子前驅物,產物manganese/cerium-silicate的表面積約430 m2g-1,外觀為不規則片狀。其中由於兩種金屬沉澱物之間具有協同作用,更能夠避免金屬沉澱物自身聚集的現象,使組成的均勻度及分散度更高。另外,若欲將材料做為觸媒來使用,可在產物烘乾之前,先透過酸洗的過程移除鈉離子,以預防高溫煅燒使金屬矽酸鹽的結構崩垮。

    氧化矽剝蝕法和共沉降法的操作過程都相當簡易,因此也可適用於製備zinc/manganese-silicate,且經過高溫煅燒後成為螢光材料。氧化矽剝蝕法所合成的zinc/manganese-silicate,主要結構為Zn-stevensite並包含微量錳離子。經過900℃煅燒後,產物的晶相會從Zn-stevensite轉變成α-Zn2SiO4,此為螢光材料的主體,負責傳遞能量,而摻雜於結構中的錳離子,則為負責發光的活化劑。若以波長254 nm的紫外光燈照射煅燒後的材料,會放出波長525 nm的綠色螢光。共沉降法則可產生顆粒小且高度分散的金屬沉澱物,若以水熱72小時或較低的溫度700℃煅燒皆能讓結構轉相成α-Zn2SiO4。由此判斷共沉降法使前驅物之間的狀態更貼近自然界中金屬矽酸鹽生成的機制。

    It is well known that the silicate-species at alkaline pH can have large affinity to chelate with the metal hydroxides to form stable metal silicates in natural ores. Based on this concept, we provided two facile methods to prepare porous manganese-silicate and zinc/manganese-silicate. The first step of silicate-exfoliation method was to generate metal hydroxide precipitates, and then the gel solution was mixed with sodium silicate. After hydrothermal treatment for an appropriate time, the metal silicate was formed. It was a difference between two methods that the co-precipitation method generated the metal hydroxide precipitates in an alkaline silicate aqueous solution. The effect of pH, the ratio of metal/silica, hydrothermal time, and other experimental parameters were also discussed in detail. The resulted manganese-silicate demonstrated high performances to be used as catalysts, and zinc/manganese-silicate served as phosphors with potential applications in optical devices.

    第一章 緒論 1 1.1 金屬矽酸鹽孔洞材料之研究動機與目的 1 1.2 中孔洞材料 1 1.2.1 中孔洞材料介紹 1 1.2.2 中孔洞材料主要的研究範疇 2 1.3 矽酸鹽的基本概念 4 1.4 結合金屬氧化物之中孔洞氧化矽複合材料 6 1.4.1 結合金屬氧化物複合材料的合成方法 6 1.5 頁矽酸鹽(phyllosilicates)的簡介 7 1.6 螢光材料的基本介紹 9 1.6.1 光致發光原理 10 1.6.2 濃度淬熄效應 11 1.6.3 Zn2SiO4的介紹 11 1.7 應用範疇所使用之物質的性質介紹 12 1.7.1 臭氧的基本性質 12 1.7.2 一氧化氮的基本性質 13 第二章 實驗部分 14 2.1 化學藥品 14 2.2 實驗流程 15 2.2.1 以氧化矽剝蝕法製備manganese-silicate孔洞材料並放大製程 15 2.2.2 推測以氧化矽剝蝕法製備之manganese-silicate的結構 16 2.2.3 以共沉降法製備manganese-silicate孔洞材料 17 2.2.4 以共沉降法製備manganese/cerium-silicate孔洞材料 18 2.2.5 以氧化矽剝蝕法製備zinc/manganese-silicate螢光材料 19 2.2.6 以共沉降法製備zinc/manganese-silicate螢光材料 20 2.3 儀器鑑定分析 21 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) 21 2.3.2 氮氣等溫吸附/脫附測量(N2 Adsorption/Desorption Isotherm) 21 2.3.3 X-射線粉末繞射光譜(Powder X-Ray Diffraction;PXRD) 26 2.3.4 全反射紅外光譜法(Attenuated Total Reflectance;ATR) 27 2.3.5 熱重分析儀(Thermogravimetry Analysis;TGA) 27 2.3.6 能量分散光譜儀(Energy Dispersive Spectrometer;EDS) 28 2.3.7 螢光光譜儀(Fluorescence Spectrophotometer) 28 第三章 製備manganese-silicate孔洞材料 29 3.1 以氧化矽剝蝕法製備manganese-silicate孔洞材料並放大製程 29 3.1.1 研究動機 29 3.1.2 總水量效應的探討 30 3.1.3 原料來源對產物的影響 32 3.1.4 鹼源濃度對產物的影響 33 3.1.5 反應之pH值對產物的影響 34 3.1.6 水熱溫度與時間對產物的影響 36 3.1.7 應用-manganese-silicate催化臭氧之分解 37 3.2 推測以氧化矽剝蝕法製備之manganese-silicate的結構 38 3.3 以共沉降法製備manganese-silicate孔洞材料 41 3.3.1 反應之pH值對產物的影響 41 3.3.2 Mn/SiO2莫耳比例對產物的影響 44 3.3.3 水熱時間對產物的影響 46 3.3.4 不同Mn2+前驅物對產物的影響 48 3.3.5 推導反應機構 48 3.3.6 比較氧化矽剝蝕法與共沉降法製備之manganese-silicate的性質 49 3.4 以共沉降法製備manganese/cerium-silicate孔洞材料 51 3.4.1 反應之pH值對產物的影響 52 3.4.2 Mn/Ce莫耳比例對產物的影響 54 3.4.3 (Mn+Ce)/SiO2莫耳比例對產物的影響 56 3.4.4 水熱時間對產物的影響 58 3.4.5 過濾後酸洗對產物的影響 60 3.4.6 不同煅燒溫度對產物的影響 61 3.4.7 應用-manganese/cerium-silicate低溫下選擇性催化還原一氧化氮 63 第四章 製備zinc/manganese-silicate螢光材料 64 4.1 以氧化矽剝蝕法製備zinc/manganese-silicate螢光材料 65 4.1.1 反應之pH值對產物的影響 65 4.1.2 Zn/SiO2莫耳比例對產物的影響 68 4.1.3 Zn/Mn莫耳比例對產物的影響 70 4.1.4 總水量效應的探討 71 4.1.5 攪拌時間效應的探討 73 4.1.6 水熱時間對產物的影響 75 4.1.7 不同煅燒溫度對螢光強度的影響 77 4.1.8 推測反應機構 79 4.2 以共沉降法製備zinc/manganese-silicate螢光材料 80 4.2.1 反應之pH值對產物的影響 81 4.2.2 Zn/SiO2莫耳比例對產物的影響 83 4.2.3 Zn/Mn莫耳比例對產物的影響 85 4.2.4 總水量效應的探討 86 4.2.5 攪拌時間效應的探討 87 4.2.6 水熱時間對產物的影響 88 4.2.7 不同煅燒溫度對螢光強度的影響 90 第五章 總結 92 參考文獻 94

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    2. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew. Chem. Int. Ed., 2003, 42, 3146-3150.
    3. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    4. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    5. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    6. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
    7. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
    8. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
    9. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-1262.
    10. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
    11. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
    12. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
    13. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-417.
    14. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
    15. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv. Mater., 2000, 12, 206-209.
    16. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    17. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
    18. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-17.
    19. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
    20. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv. Mater., 2001, 13, 649-652.
    21. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
    22. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
    23. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
    24. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
    25. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
    26. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
    27. M. G. Clerici, G. Bellussi and U. Romano, J. Catal., 1991, 129, 159-167.
    28. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr. Pap. Am. Chem. S, 1993, 206, 105-Petr.
    29. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor. Mat., 1998, 25, 43-57.
    30. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    31. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal., 1994, 148, 569-574.
    32. M. D. Alba, Z. H. Luan and J. Klinowski, J. Phys. Chem-Us, 1996, 100, 2178-2182.
    33. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal. Lett., 1996, 37, 113-120.
    34. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater., 2001, 13, 552-557.
    35. D. R. Rolison, Science, 2003, 299, 1698-1701.
    36. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat., 2008, 113, 562-574.
    37. M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc., 2009, 131, 18112-18118.
    38. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301-309.
    39. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287-13293.
    40. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
    41. Soil and Environmental Biogeochemistry @ Stanford University, Soil Chemistry, Mineral-Summary.
    42. 中國地質大學-精品課程網,第二十一章第四節。
    43. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv. Polym. Sci., 1999, 138, 107-147.
    44. B. N. Figgis(Ed), Introduction to ligand Fields, 1975.
    45. A. M. Stoneham(Ed), Theory of Defects in Solids, 1975.
    46. G. Blasse and B.C. Grabmaier, Luminescent Materials, 1994.
    47. R. C. Ropp, Luminescence and the solid state, 1991.
    48. 劉如熹、紀喨勝,紫外光發光二極體用螢光介紹,2003。
    49. P. Atkins and L. Jones, Chemistry molecules, Matter, and Change, 1997.
    50. 劉如熹、王健源,白光發光二極體製作技術,2001。
    51. J. Nawrocki, and B. Kasprzyk-Hordern, Appl. Catal. B, 2010, 99, 27-42.
    52. T. E. Agustina, H. M. Ang, and V. K. Vareek, J. Photochem. Photobiol. C, 2005, 6, 264-273.
    53. V. Yargeau, and C. Leclair, Ozone Sci. Eng., 2008, 30, 175-188.
    54. S. Stephens, M. J. Rossi, and D. M. Golden, Int. J. Chem. Kinet., 1986, 18, 1133-1149.
    55. D. Helmig, Atomos. Environ., 1997, 31, 3635-3651.
    56. B. Dhandapani, and S. T. Oyama, Appl. Catal. B, 1997, 11, 129-166.
    57. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
    58. S. A. Mian, L. C. Saha, J. Jang, L. Wang, X. Gao, and S. J. Nagase, Phys. Chem. C, 2010, 114, 20793-20800.
    59. S. A. Mian, X. Gao, S. Nagase, and J. Jang, Theor. Chem. Acc., 2011, 130, 333-339.
    60. W. O. Yah, H. Xu, H. Soejima, W. Ma, Y. Lvov, and A. Takahara, J. Am. Chem. Soc., 2012, 134, 12134-12137.
    61. S. Vankova, T. Tsoncheva, and D. Mehandjiev, Catal. Commun., 2004, 5, 95-99.
    62. H. Perez, P. Navarro, J. J. Delgado, and M. Montes, Appl. Catal. A, 2011, 400, 238-248.
    63. J. Wang, Z. Peng, B. Wang, L. Han, L. Chang, W. Bao, and G. Feng, J. Nanomaterials, 2014.
    64. R. Xu, X. Wang, D. Wang, K. Zhou, and Y. Li, J. Catal., 2006, 237, 426-430.
    65. K. Frey, V. Iablokov, G. Safran, J. Osan, I. Sajo, R. Szukiewicz, S. Chenakin, and N. Kruse, J. Catal., 2012, 287, 30-36.
    66. J. I. Gutierrez-Ortiz, R. Lopez-Fonseca, U. Aurrekoetxea, and J. R. Gonzalez-Velasco, J. Catal., 2003, 218, 148-154.
    67. H. Einaga, Y. Teraoka, and A. Ogata, J. Catal., 2013, 305, 227-237.
    68. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1992, 1, 297-316.
    69. R. Q. Long, R. T. Yang, and R. Chang, Chem. Commun., 2002, 5, 452-453.
    70. G. S. Qi, R. T. Yang, and R. Chang, Catal. Lett., 2003, 87, 67-71.
    71. Z. Y. Ding, L. Li, D. Wade, and E. F. Gloyna, Ind. Eng. Chem. Res., 1998, 37, 1707-1716.
    72. G. S. Qi, R. T. Yang, and R. Chang, Appl. Catal. B, 2004, 51, 93-106.
    73. F. Kapteijn, L. Singoredjo, A. Andreini, and J. A. Moulijn, Appl. Catal. B, 1994, 3, 173-189.
    74. H. C. Yao, and Y. F. Y. Yao, J. Catal., 1984, 86, 254-365.
    75. M. Machida, M. Uto, D. Kurogi, and T. Kijima, Chem. Mater., 2000, 12, 3158-3164.
    76. C. K. Lee, C. C. Wang, M. D. Lyu, L. C. Juang, S. S. Liu, and S. H. Hung, J. Colloid Interface Sci., 2007, 316, 562-569.
    77. A. Morell, and N. Elkhiati, J. Electrochem. Soc., 1993, 140, 2019-2022.
    78. J. Lin, D. U. Sanger, M. Mennig, and K. Barner, Mater. Sci. Eng. B, 1999, 64, 73-78.
    79. T. C. Kang, and H. D. Park, Appl. Phys. A, 2003, 77,529-532.
    80. V. B. Bhatkar, S. K. Omanwar, and S. V. Moharil, Phys. Stat. Sol., 2002, 191, 272-276.
    81. T. H. Cho, and H. J. Chang, Ceramics International, 2003, 29, 611-618.
    82. R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y. Zhang, and S. Buddhudu, Mater. Sci. Eng. B, 2003, 100, 136-141.
    83. M. Takesue, H. Hayashi, and R. L. Smith, Prog. Cryst. Growth Charact. Mater., 2009, 55, 98-124.
    84. P. V. Ramakrishna, D. B. R. K. Murthy, and D. L. Sastry, Ceramics International, 2014, 40, 4889-4895.
    85. E. F. Medvedev, and A. Sh. Komarevskaya, Glass Ceram., 2007, 64, 6-10.
    86. Y. Jiang, J. Chen, Z. Xie, and L. Zheng, Mater. Chem. Phys., 2010, 120, 313-318.
    87. M. Hafeez, A. Ali, S. Manzoor, A. S. Bhatti, Nanoscale, 2014, 6, 14845-14855.
    88. C. R. Ronda, and T. Amrein, J. Lumin., 1996, 69, 245-248.
    89. T. S. Copeland, B. I. Lee, J. Qi, and A. K. Elrod, J. Lumin., 2002, 97, 168-173.
    90. J. Wan, Z. Wang, X. Chen, L. Wu, W. Yu, and Y. Qian, J. Lumin., 2006, 121, 32-38.
    91. M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, and R. L. Smith, J. Solid State Chem., 2008, 181, 1307-1313.
    92. A. Patra, G. A. Baker, and S. N. Baker, J. Lumin., 2005, 111, 105-111.
    93. G. A. Parks, Chem. Rev., 1965, 65, 177-198.

    下載圖示 校內:2020-07-10公開
    校外:2020-07-10公開
    QR CODE