| 研究生: |
盧羿婷 Lu, Yi-Ting |
|---|---|
| 論文名稱: |
金屬矽酸鹽孔洞材料之合成與鑑定 Synthesis and Characterization of Porous Metal Silicate Materials |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 金屬矽酸鹽孔洞材料 、氧化矽剝蝕法 、共沉降法 |
| 外文關鍵詞: | metal silicate, silicate-exfoliation, co-precipitation |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分別以Mn2+及Zn2+為主要的金屬離子前驅物,矽酸鈉為氧化矽的來源,透過氧化矽剝蝕法和共沉降法製備出金屬矽酸鹽孔洞材料。兩種實驗手法都類似於一鍋化合成的概念。氧化矽剝蝕法會先利用鹼源使金屬離子轉變成金屬沉澱物,接著再與矽酸鈉水溶液互相混合;共沉降法則是將金屬離子水溶液加進高鹼性的矽酸鈉水溶液中,過程會產生分散度高的金屬沉澱物與非晶相的氧化矽。兩種手法在後續皆藉由100℃水熱所提供的能量,使前驅物互相拆解再重組,最後形成金屬矽酸鹽孔洞材料,並以數種儀器鑑定其基本性質。
氧化矽剝蝕法合成manganese-silicate的部分,本論文嘗試以放大製程的方式來製備。經由重新微調實驗參數的範圍,並將原料由試藥級更換成工業級後,成功將產量從1 g增加至10 g,產物的外觀仍保持泡泡狀構形,表面積亦維持在500 m2g-1左右,也達到節省成本之目的。泡泡狀的manganese-silicate可再藉由甲酸酸洗及螯合dopamine的方式,推測出實際結構是由一層氧化矽在外側、一層氧化錳在內側所排列而成。然而,氧化矽剝蝕法所製備的manganese-silicate,存在著少許前驅物殘留以及實驗參數範圍較狹窄等缺點,於是本實驗室開發出共沉降法以期能改善上述問題。共沉降法可得到組成均勻、具有微孔尺度的孔洞且外觀為不規則片狀的manganese-silicate,表面積約450 m2g-1。由於manganese-silicate幾乎沒有任何未作用完的前驅物殘留(例如:氫氧化錳、氧化矽),因此便提供了引入其他金屬離子的可能性。本論文選擇鈰離子作為第二種金屬離子前驅物,產物manganese/cerium-silicate的表面積約430 m2g-1,外觀為不規則片狀。其中由於兩種金屬沉澱物之間具有協同作用,更能夠避免金屬沉澱物自身聚集的現象,使組成的均勻度及分散度更高。另外,若欲將材料做為觸媒來使用,可在產物烘乾之前,先透過酸洗的過程移除鈉離子,以預防高溫煅燒使金屬矽酸鹽的結構崩垮。
氧化矽剝蝕法和共沉降法的操作過程都相當簡易,因此也可適用於製備zinc/manganese-silicate,且經過高溫煅燒後成為螢光材料。氧化矽剝蝕法所合成的zinc/manganese-silicate,主要結構為Zn-stevensite並包含微量錳離子。經過900℃煅燒後,產物的晶相會從Zn-stevensite轉變成α-Zn2SiO4,此為螢光材料的主體,負責傳遞能量,而摻雜於結構中的錳離子,則為負責發光的活化劑。若以波長254 nm的紫外光燈照射煅燒後的材料,會放出波長525 nm的綠色螢光。共沉降法則可產生顆粒小且高度分散的金屬沉澱物,若以水熱72小時或較低的溫度700℃煅燒皆能讓結構轉相成α-Zn2SiO4。由此判斷共沉降法使前驅物之間的狀態更貼近自然界中金屬矽酸鹽生成的機制。
It is well known that the silicate-species at alkaline pH can have large affinity to chelate with the metal hydroxides to form stable metal silicates in natural ores. Based on this concept, we provided two facile methods to prepare porous manganese-silicate and zinc/manganese-silicate. The first step of silicate-exfoliation method was to generate metal hydroxide precipitates, and then the gel solution was mixed with sodium silicate. After hydrothermal treatment for an appropriate time, the metal silicate was formed. It was a difference between two methods that the co-precipitation method generated the metal hydroxide precipitates in an alkaline silicate aqueous solution. The effect of pH, the ratio of metal/silica, hydrothermal time, and other experimental parameters were also discussed in detail. The resulted manganese-silicate demonstrated high performances to be used as catalysts, and zinc/manganese-silicate served as phosphors with potential applications in optical devices.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
2. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew. Chem. Int. Ed., 2003, 42, 3146-3150.
3. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
4. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
5. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
6. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
7. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
8. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
9. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-1262.
10. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
11. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
12. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
13. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-417.
14. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
15. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv. Mater., 2000, 12, 206-209.
16. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
17. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
18. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-17.
19. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
20. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv. Mater., 2001, 13, 649-652.
21. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
22. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
23. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
24. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
25. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
26. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
27. M. G. Clerici, G. Bellussi and U. Romano, J. Catal., 1991, 129, 159-167.
28. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr. Pap. Am. Chem. S, 1993, 206, 105-Petr.
29. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor. Mat., 1998, 25, 43-57.
30. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
31. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal., 1994, 148, 569-574.
32. M. D. Alba, Z. H. Luan and J. Klinowski, J. Phys. Chem-Us, 1996, 100, 2178-2182.
33. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal. Lett., 1996, 37, 113-120.
34. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater., 2001, 13, 552-557.
35. D. R. Rolison, Science, 2003, 299, 1698-1701.
36. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat., 2008, 113, 562-574.
37. M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc., 2009, 131, 18112-18118.
38. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301-309.
39. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287-13293.
40. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
41. Soil and Environmental Biogeochemistry @ Stanford University, Soil Chemistry, Mineral-Summary.
42. 中國地質大學-精品課程網,第二十一章第四節。
43. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv. Polym. Sci., 1999, 138, 107-147.
44. B. N. Figgis(Ed), Introduction to ligand Fields, 1975.
45. A. M. Stoneham(Ed), Theory of Defects in Solids, 1975.
46. G. Blasse and B.C. Grabmaier, Luminescent Materials, 1994.
47. R. C. Ropp, Luminescence and the solid state, 1991.
48. 劉如熹、紀喨勝,紫外光發光二極體用螢光介紹,2003。
49. P. Atkins and L. Jones, Chemistry molecules, Matter, and Change, 1997.
50. 劉如熹、王健源,白光發光二極體製作技術,2001。
51. J. Nawrocki, and B. Kasprzyk-Hordern, Appl. Catal. B, 2010, 99, 27-42.
52. T. E. Agustina, H. M. Ang, and V. K. Vareek, J. Photochem. Photobiol. C, 2005, 6, 264-273.
53. V. Yargeau, and C. Leclair, Ozone Sci. Eng., 2008, 30, 175-188.
54. S. Stephens, M. J. Rossi, and D. M. Golden, Int. J. Chem. Kinet., 1986, 18, 1133-1149.
55. D. Helmig, Atomos. Environ., 1997, 31, 3635-3651.
56. B. Dhandapani, and S. T. Oyama, Appl. Catal. B, 1997, 11, 129-166.
57. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
58. S. A. Mian, L. C. Saha, J. Jang, L. Wang, X. Gao, and S. J. Nagase, Phys. Chem. C, 2010, 114, 20793-20800.
59. S. A. Mian, X. Gao, S. Nagase, and J. Jang, Theor. Chem. Acc., 2011, 130, 333-339.
60. W. O. Yah, H. Xu, H. Soejima, W. Ma, Y. Lvov, and A. Takahara, J. Am. Chem. Soc., 2012, 134, 12134-12137.
61. S. Vankova, T. Tsoncheva, and D. Mehandjiev, Catal. Commun., 2004, 5, 95-99.
62. H. Perez, P. Navarro, J. J. Delgado, and M. Montes, Appl. Catal. A, 2011, 400, 238-248.
63. J. Wang, Z. Peng, B. Wang, L. Han, L. Chang, W. Bao, and G. Feng, J. Nanomaterials, 2014.
64. R. Xu, X. Wang, D. Wang, K. Zhou, and Y. Li, J. Catal., 2006, 237, 426-430.
65. K. Frey, V. Iablokov, G. Safran, J. Osan, I. Sajo, R. Szukiewicz, S. Chenakin, and N. Kruse, J. Catal., 2012, 287, 30-36.
66. J. I. Gutierrez-Ortiz, R. Lopez-Fonseca, U. Aurrekoetxea, and J. R. Gonzalez-Velasco, J. Catal., 2003, 218, 148-154.
67. H. Einaga, Y. Teraoka, and A. Ogata, J. Catal., 2013, 305, 227-237.
68. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1992, 1, 297-316.
69. R. Q. Long, R. T. Yang, and R. Chang, Chem. Commun., 2002, 5, 452-453.
70. G. S. Qi, R. T. Yang, and R. Chang, Catal. Lett., 2003, 87, 67-71.
71. Z. Y. Ding, L. Li, D. Wade, and E. F. Gloyna, Ind. Eng. Chem. Res., 1998, 37, 1707-1716.
72. G. S. Qi, R. T. Yang, and R. Chang, Appl. Catal. B, 2004, 51, 93-106.
73. F. Kapteijn, L. Singoredjo, A. Andreini, and J. A. Moulijn, Appl. Catal. B, 1994, 3, 173-189.
74. H. C. Yao, and Y. F. Y. Yao, J. Catal., 1984, 86, 254-365.
75. M. Machida, M. Uto, D. Kurogi, and T. Kijima, Chem. Mater., 2000, 12, 3158-3164.
76. C. K. Lee, C. C. Wang, M. D. Lyu, L. C. Juang, S. S. Liu, and S. H. Hung, J. Colloid Interface Sci., 2007, 316, 562-569.
77. A. Morell, and N. Elkhiati, J. Electrochem. Soc., 1993, 140, 2019-2022.
78. J. Lin, D. U. Sanger, M. Mennig, and K. Barner, Mater. Sci. Eng. B, 1999, 64, 73-78.
79. T. C. Kang, and H. D. Park, Appl. Phys. A, 2003, 77,529-532.
80. V. B. Bhatkar, S. K. Omanwar, and S. V. Moharil, Phys. Stat. Sol., 2002, 191, 272-276.
81. T. H. Cho, and H. J. Chang, Ceramics International, 2003, 29, 611-618.
82. R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y. Zhang, and S. Buddhudu, Mater. Sci. Eng. B, 2003, 100, 136-141.
83. M. Takesue, H. Hayashi, and R. L. Smith, Prog. Cryst. Growth Charact. Mater., 2009, 55, 98-124.
84. P. V. Ramakrishna, D. B. R. K. Murthy, and D. L. Sastry, Ceramics International, 2014, 40, 4889-4895.
85. E. F. Medvedev, and A. Sh. Komarevskaya, Glass Ceram., 2007, 64, 6-10.
86. Y. Jiang, J. Chen, Z. Xie, and L. Zheng, Mater. Chem. Phys., 2010, 120, 313-318.
87. M. Hafeez, A. Ali, S. Manzoor, A. S. Bhatti, Nanoscale, 2014, 6, 14845-14855.
88. C. R. Ronda, and T. Amrein, J. Lumin., 1996, 69, 245-248.
89. T. S. Copeland, B. I. Lee, J. Qi, and A. K. Elrod, J. Lumin., 2002, 97, 168-173.
90. J. Wan, Z. Wang, X. Chen, L. Wu, W. Yu, and Y. Qian, J. Lumin., 2006, 121, 32-38.
91. M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, and R. L. Smith, J. Solid State Chem., 2008, 181, 1307-1313.
92. A. Patra, G. A. Baker, and S. N. Baker, J. Lumin., 2005, 111, 105-111.
93. G. A. Parks, Chem. Rev., 1965, 65, 177-198.