| 研究生: |
陳佑昇 Chen, Yu-Sheng |
|---|---|
| 論文名稱: |
管狀銅頁矽酸鹽生成動力學之研究 A Study on the Kinetics of Formation of Tubular Copper Phyllosilicate |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 管狀銅頁矽酸鹽 、矽酸鹽剝蝕法 、Cu3(btc)2-silicate材料 |
| 外文關鍵詞: | tubular copper phyllosilicate, silicate-exfoliation method, Cu3(btc)2-silicate |
| 相關次數: | 點閱:121 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主旨在於,利用簡便且對環境友善的矽酸鹽剝蝕法製備管狀構型之銅頁矽酸鹽(Copper phyllosilicate)孔洞材料,並探討其生成動力學。過往合成管狀copper phyllosilicate 需使用氨蒸發法,同時需要運用高壓釜來提供高溫高壓的環境,不僅對環境及安全有危害,還限制了材料在量產上的可能性及應用性。本研究選用的方式,會先將銅離子運用氫氧化鈉滴定形成氫氧化銅,再加入中孔洞氧化矽,在鹼性環境下中孔洞氧化矽會溶解成矽酸鹽,再藉由迴流所提供之能量,矽酸鹽與氫氧化銅間會螯合並產生鍵結,再因為兩者間的晶格不匹配,產物會因為應力而產生捲曲,最終形成管狀構型之copper phyllosilicate。
為取得矽酸鹽剝蝕法製備copper phyllosilicate的最佳條件,本研究將反應區分成兩個階段,分別是氫氧化銅沉澱階段及矽酸鹽剝蝕氫氧化銅階段,同時探討沉澱溫度、反應物來源、沉澱時間、反應濃度及Cu/SiO2莫耳比等參數之影響。經調整後,可以成功合成出比表面積至少有450 m2g-1以上,且管狀構型有達微米級之copper phyllosilicate。此外,藉由參數調整可以得知,在氫氧化銅沉澱階段中,銅離子有兩種路徑,一種是形成鹼式銅,另一種是形成氫氧化銅,取決於滴定的氫氧化鈉量及陰離子。在矽酸鹽剝蝕氫氧化銅階段中,不同的氧化矽源會有不同時長的誘導期,並且需要在有攪拌的環境下才能進行。最終,本研究藉由反應時間的調整,發現矽酸鹽剝蝕法製備copper phyllosilicate為一級反應,並計算出活化能大約為77 kJ/mol。
因部分文獻顯示銅離子有作為硫化物感測器的應用潛力,本研究簡單評估了copper phyllosilicate及以copper phyllosilicate合成出的Cu3(btc)2-silicate在硫化物感測器的應用潛力,期望能建立其研究方針。
Copper hydroxide (Cu(OH)2) was used as a hard template to prepare tubular copper phyllosilicate materials using a silicate-exfoliation method. During hydrothermal reaction under alkaline conditions (pH ≅ 12), the silicate ions formed chemical bonds with the copper hydroxide layers and produced a tubular morphology as a result of mismatches in the lateral dimensions of the octahedral sheet (M-O) and tetrahedral silicate sheet (Si-O), respectively. To properly understand the mechanisms underlying the reaction process, the reaction was divided into two parts, i.e., the precipitation reaction of the Cu(OH)2 and the subsequent silicate-exfoliation reaction. The investigations focused on the effects of the template precipitation temperature, reactant source, precipitation time, and other experimental parameters on the morphology of the synthesized materials and the bonding ability between the Cu(OH)2 and the silicate. A search was made for the parameters which yielded tubular copper phyllosilicate materials with a high surface area and a long and complete tubular morphology. The reaction order and activation energy of the silicate-exfoliation process were additionally evaluated using the Arrhenius equation. Finally, the tubular copper phyllosilicate was used as a catalyst to synthesize Cu3(btc)2-silicate materials for sulfide sensing applications.
1. Kettler, P. B., Platinum group metals in catalysis: fabrication of catalysts and catalyst precursors. Organic process research & development 2003, 7 (3), 342-354.
2. Lo, V. K.-Y.; Chan, A. O.-Y.; Che, C.-M., Gold and silver catalysis: from organic transformation to bioconjugation. Organic & biomolecular chemistry 2015, 13 (24), 6667-6680.
3. Lowry, G. V.; Reinhard, M., Hydrodehalogenation of 1-to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environmental Science & Technology 1999, 33 (11), 1905-1910.
4. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S., Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 2016, 116 (6), 3722-3811.
5. Kidwai, M.; Bansal, V.; Mishra, N. K.; Kumar, A.; Mozumdar, S., Copper-nanoparticle-catalyzed A3 coupling via CH activation. Synlett 2007, 2007 (10), 1581-1584.
6. Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S., Cu-nanoparticle catalyzed O-arylation of phenols with aryl halides via Ullmann coupling. Tetrahedron Lett. 2007, 48 (50), 8883-8887.
7. Kim, T.; Palmore, G. T. R., A scalable method for preparing Cu electrocatalysts that convert CO 2 into C 2+ products. Nature communications 2020, 11 (1), 1-11.
8. Sreethawong, T.; Yoshikawa, S., Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal. Commun. 2005, 6 (10), 661-668.
9. Zhang, X.; Liu, J.-X.; Zijlstra, B.; Filot, I. A.; Zhou, Z.; Sun, S.; Hensen, E. J., Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 2018, 43, 200-209.
10. Moulijn, J. A.; Van Diepen, A.; Kapteijn, F., Catalyst deactivation: is it predictable?: What to do? Applied Catalysis A: General 2001, 212 (1-2), 3-16.
11. Chen, C.-S.; You, J.-H.; Lin, J.-H.; Chen, Y.-Y., Effect of highly dispersed active sites of Cu/TiO2 catalyst on CO oxidation. Catal. Commun. 2008, 9 (14), 2381-2385.
12. Chen, L.; Horiuchi, T.; Osaki, T.; Mori, T., Catalytic selective reduction of NO with propylene over Cu-Al2O3 catalysts: influence of catalyst preparation method. Applied Catalysis B: Environmental 1999, 23 (4), 259-269.
13. Li, S.; Wang, Y.; Zhang, J.; Wang, S.; Xu, Y.; Zhao, Y.; Ma, X., Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst. Industrial & Engineering Chemistry Research 2015, 54 (4), 1243-1250.
14. Ping, C.; Li, F.; Jian, Z.; Wei, J., Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials 2006, 31 (6), 452-455.
15. Bian, Z.; Kawi, S., Preparation, characterization and catalytic application of phyllosilicate: A review. Catal. Today 2020, 339, 3-23.
16. Brigatti, M. F.; Galan, E.; Theng, B. K. G., Chapter 2 Structures and Mineralogy of Clay Minerals. In Handbook of Clay Science, 2006; pp 19-86.
17. McDonald, A.; Scott, B.; Villemure, G., Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Microporous Mesoporous Mater. 2009, 120 (3), 263-266.
18. Toupance, T.; Kermarec, M.; Lambert, J.-F.; Louis, C., Conditions of Formation of Copper Phyllosilicates in Silica-Supported Copper Catalysts Prepared by Selective Adsorption. The Journal of Physical Chemistry B 2002, 106 (9), 2277-2286.
19. Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X., Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134 (34), 13922-5.
20. Abbas, M.; Chen, Z.; Zhang, J.; Chen, J., Highly dispersed, ultra-small and noble metal-free Cu nanodots supported on porous SiO2 and their excellent catalytic hydrogenation of dimethyl oxalate to methyl glycolate. New J. Chem. 2018, 42 (12), 10290-10299.
21. Sun, Y.; Meng, F.; Ge, Q.; Sun, J., Importance of the Initial Oxidation State of Copper for the Catalytic Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. ChemistryOpen 2018, 7 (12), 969-976.
22. Ding, J.; Popa, T.; Tang, J.; Gasem, K. A. M.; Fan, M.; Zhong, Q., Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Applied Catalysis B: Environmental 2017, 209, 530-542.
23. Wang, Z.-Q.; Xu, Z.-N.; Peng, S.-Y.; Zhang, M.-J.; Lu, G.; Chen, Q.-S.; Chen, Y.; Guo, G.-C., High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catalysis 2015, 5 (7), 4255-4259.
24. Wang, Z.-Q.; Xu, Z.-N.; Zhang, M.-J.; Chen, Q.-S.; Chen, Y.; Guo, G.-C., Insight into composition evolution in the synthesis of high-performance Cu/SiO 2 catalysts for CO 2 hydrogenation. RSC advances 2016, 6 (30), 25185-25190.
25. Tsou, Y. J.; To, T. D.; Chiang, Y. C.; Lee, J. F.; Kumar, R.; Chung, P. W.; Lin, Y. C., Hydrophobic Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Levulinic Acid to gamma-Valerolactone. ACS Appl Mater Interfaces 2020, 12 (49), 54851-54861.
26. Jiang, J. W.; Tu, C. C.; Chen, C. H.; Lin, Y. C., Highly Selective Silica‐supported Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Adipic Acid to 1,6‐hexanediol. ChemCatChem 2018, 10 (23), 5449-5458.
27. Zhu, Y.; Kong, X.; Yin, J.; You, R.; Zhang, B.; Zheng, H.; Wen, X.; Zhu, Y.; Li, Y.-W., Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J. Catal. 2017, 353, 315-324.
28. Dong, F.; Zhu, Y.; Zhao, H.; Tang, Z., Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catalysis Science & Technology 2017, 7 (9), 1880-1891.
29. Xu, C.; Chen, G.; Zhao, Y.; Liu, P.; Duan, X.; Gu, L.; Fu, G.; Yuan, Y.; Zheng, N., Interfacing with silica boosts the catalysis of copper. Nat Commun 2018, 9 (1), 3367.
30. Toupance, T.; Kermarec, M.; Louis, C., Metal Particle Size in Silica-Supported Copper Catalysts. Influence of the Conditions of Preparation and of Thermal Pretreatments. The Journal of Physical Chemistry B 2000, 104 (5), 965-972.
31. Li, F.; Wang, L.; Han, X.; Cao, Y.; He, P.; Li, H., Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method. Int. J. Hydrogen Energy 2017, 42 (4), 2144-2156.
32. Zhu, S.; Gao, X.; Zhu, Y.; Fan, W.; Wang, J.; Li, Y., A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science & Technology 2015, 5 (2), 1169-1180.
33. Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Shen, W.; Xu, H.; Fan, K., Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 2008, 257 (1), 172-180.
34. Pompe, C. E.; Slagter, M.; de Jongh, P. E.; de Jong, K. P., Impact of heterogeneities in silica-supported copper catalysts on their stability for methanol synthesis. J. Catal. 2018, 365, 1-9.
35. Di, W.; Cheng, J.; Tian, S.; Li, J.; Chen, J.; Sun, Q., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Applied Catalysis A: General 2016, 510, 244-259.
36. Popa, T.; Zhang, Y.; Jin, E.; Fan, M., An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A: General 2015, 505, 52-61.
37. Li, H.; Ban, L.; Wang, Z.; Meng, P.; Zhang, Y.; Wu, R.; Zhao, Y., Regulation of Cu Species in CuO/SiO2 and Its Structural Evolution in Ethynylation Reaction. Nanomaterials (Basel) 2019, 9 (6).
38. Zhang, B.; Hui, S.; Zhang, S.; Ji, Y.; Li, W.; Fang, D., Effect of copper loading on texture, structure and catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Natural Gas Chemistry 2012, 21 (5), 563-570.
39. He, L.; Chen, X.; Ma, J.; He, H.; Wang, W., Characterization and catalytic performance of sol–gel derived Cu/SiO2 catalysts for hydrogenolysis of diethyl oxalate to ethylene glycol. J. Sol-Gel Sci. Technol. 2010, 55 (3), 285-292.
40. Du, X.; Fu, N.; Zhang, S.; Chen, C.; Wang, D.; Li, Y., Au/CuSiO 3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Research 2016, 9 (9), 2681-2686.
41. Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Ma, X.; Gong, J., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature communications 2013, 4 (1), 1-7.
42. Gong, X.; Wang, M.; Fang, H.; Qian, X.; Ye, L.; Duan, X.; Yuan, Y., Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters. Chem. Commun. 2017, 53 (51), 6933-6936.
43. To, D.-T.; Lin, Y.-C., Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021, 11 (2), 255.
44. 蔡昀志、林弘萍, 以氧化矽剝蝕法與共沉澱法合成matel-silicate孔洞材料及應用之研究. 2017.
45. 吳宇婷、林弘萍, 以金屬氫氧化物模板法製備matel-silicate孔洞性複合材料之合成與應用. 2014.
46. 張顓麟、林弘萍, 合成Copper Silicate孔洞材料作為氫化觸媒之研究. 2019.
47. Li, H.; Wang, K.; Sun, Y.; Lollar, C. T.; Li, J.; Zhou, H.-C., Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21 (2), 108-121.
48. Zhang, H.; Liu, X.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J., MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 2018, 54 (42), 5268-5288.
49. Bieniek, A.; Terzyk, A. P.; Wiśniewski, M.; Roszek, K.; Kowalczyk, P.; Sarkisov, L.; Keskin, S.; Kaneko, K., MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: recent advances and perspectives. Prog. Mater Sci. 2020, 100743.
50. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450-1459.
51. Goetjen, T. A.; Liu, J.; Wu, Y.; Sui, J.; Zhang, X.; Hupp, J. T.; Farha, O. K., Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem. Commun. 2020, 56 (72), 10409-10418.
52. Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S., Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates. Chem. Mater. 2006, 18 (5), 1337-1346.
53. Ryder, M. R.; Civalleri, B.; Cinque, G.; Tan, J.-C., Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm 2016, 18 (23), 4303-4312.
54. Bardestani, R.; Patience, G. S.; Kaliaguine, S., Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 2019, 97 (11), 2781-2791.
55. Muttakin, M.; Mitra, S.; Thu, K.; Ito, K.; Saha, B. B., Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. Int. J. Heat Mass Transfer 2018, 122, 795-805.
56. Ambroz, F.; Macdonald, T. J.; Martis, V.; Parkin, I. P., Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods 2018, 2 (11).
57. Córdova, R.; del Valle, M. A.; Arratia, A.; Gómez, H.; Schrebler, R., Effect of anions on the nucleation and growth mechanism of polyaniline. J. Electroanal. Chem. 1994, 377 (1-2), 75-83.
58. Lee, S.; Sanstead, P. J.; Wiener, J. M.; Bebawee, R.; Hilario, A. G., Effect of specific anion on templated crystal nucleation at the liquid-liquid interface. Langmuir 2010, 26 (12), 9556-64.
59. Du, G.; Van Tendeloo, G., Cu (OH) 2 nanowires, CuO nanowires and CuO nanobelts. Chem. Phys. Lett. 2004, 393 (1-3), 64-69.
60. Schildermans, I.; Mullens, J.; Van der Veken, B. J.; Yperman, J.; Franco, D.; Van Poucke, L. C., Preparation and thermal decomposition of Cu2(OH)3NO3. Thermochim. Acta 1993, 224, 227-232.
61. 温炎燊; 程龙军; 李钧; 陈昌铭, Botallackite 碱式氯化铜的显微形态及热分析表征. 收藏 2019, 3.
62. Uzunov, I.; Klissurski, D.; Teocharov, L., Thermal decomposition of basic copper sulphate monohydrate. J. Therm. Anal. Calorim. 1995, 44 (3), 685-696.
63. Cudennec, Y.; Riou, A.; Gérault, Y.; Lecerf, A., Hypothèse cristallochimique des mécanismes de formation de CuO (s) et de Cu (OH) 2 (s) à partir de Na2Cu (OH) 4 (s). Comptes Rendus de l'Académie des Sciences-Series IIC-Chemistry 2000, 3 (8), 661-666.
64. Hatamie, A.; Zargar, B.; Jalali, A., Copper nanoparticles: a new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta 2014, 121, 234-238.
65. Shojaeifard, Z.; Hemmateenejad, B.; Shamsipur, M.; Ahmadi, R., Dual fluorometric and colorimetric sensor based on quenching effect of copper (II) sulfate on the copper nanocluster for determination of sulfide ion in water samples. Journal of Photochemistry and Photobiology A: Chemistry 2019, 384, 112030.
66. Singh, N.; Chandra, R., A naked-eye colorimetric sensor based on chalcone for sequential recognition of copper (II) and sulfide in semi-aqueous solution: Spectroscopic and Theoretical approaches. New J. Chem. 2021.
67. Hendrickson, R. G.; Chang, A.; Hamilton, R. J., Co‐worker fatalities from hydrogen sulfide. American journal of industrial medicine 2004, 45 (4), 346-350.
68. Reiffenstein, R.; Hulbert, W. C.; Roth, S. H., Toxicology of hydrogen sulfide. Annu. Rev. Pharmacool. Toxicol. 1992, 32 (1), 109-134.
69. Truong, D. H.; Eghbal, M. A.; Hindmarsh, W.; Roth, S. H.; O'Brien, P. J., Molecular mechanisms of hydrogen sulfide toxicity. Drug metabolism reviews 2006, 38 (4), 733-744.
70. Rodriguez, J., The chemical properties of bimetallic surfaces: Importance of ensemble and electronic effects in the adsorption of sulfur and SO2. Prog. Surf. Sci. 2006, 81 (4), 141-189.
71. Lakhapatri, S. L.; Abraham, M. A., Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane. Applied Catalysis A: General 2009, 364 (1-2), 113-121.
72. Twigg, M. V.; Spencer, M. S., Deactivation of supported copper metal catalysts for hydrogenation reactions. Applied Catalysis a-General 2001, 212 (1-2), 161-174.
73. Rostamnia, S.; Alamgholiloo, H.; Jafari, M.; Rookhosh, R.; Abbasi, A. R., Synthesis and catalytic study of open metal site metal-organic frameworks of Cu3(BTC)2microbelts in selective organic sulfide oxidation. Appl. Organomet. Chem. 2016, 30 (11), 954-958.
74. Rachuri, Y.; Bisht, K. K.; Suresh, E., Two-Dimensional Coordination Polymers Comprising Mixed Tripodal Ligands for Selective Colorimetric Detection of Water and Iodine Capture. Crystal Growth & Design 2014, 14 (7), 3300-3308.