簡易檢索 / 詳目顯示

研究生: 許宗義
Hsu, Tsung-Yi
論文名稱: p型高功函數透明導電陽極應用於 有機發光二極體
Applications of p-type High Work Function Transparent Conductive Anode on Organic Light-Emitting Diode
指導教授: 洪昭南
Hong, C. Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 103
中文關鍵詞: 有機發光二極體p型透明導電膜
外文關鍵詞: OLED, NiO
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究藉由感應藕合磁控濺鍍法,可得p型氧化鎳透明導電膜。在基板溫度200 ℃,總壓力10 mtorr,純氧氣相組成蒸鍍時,可得最低電阻率1.7×10-1 Ω-cm的膜。氧化鎳(NiO)膜厚為114 nm時,在可見光區(400nm~800nm)平均穿透率約40 %。
    在單層TPD元件中,元件的陽極為ITO/NiO的單層TPD元件在電流密度100 (A/m2) 時的外加電壓為3 V,而ITO表面經氧電漿處理的單層TPD元件在電流密度100 (A/m2) 時的外加電壓則高達11 V。由於p型的NiO費米能階(Fermi level)更靠近有機層TPD的最高填滿分子軌域能階(HOMO),使得電洞注入能障減小,因此ITO/NiO陽極電洞注入有機層TPD能力比經氧電漿處理的ITO更好。
    ITO/NiO陽極在有機發光二極體元件的影響主要在降低起始電壓及元件的操作電壓。有機發光二極體在發光亮度1 (cd/m2) 時的操作電壓定義為起始電壓。在ITO/NiO陽極元件起始電壓為3 V,明顯降低了元件的起始電壓,但同時也略微降低了元件效率。效率下降是因為氧化鎳幫助電洞大幅增加但缺少相對應的電子注入,電荷在有機發光元件中不平衡所致。所以,為了提升元件效率元件的設計必須平衡電子及電洞的注入。
    NiO提供了有機發光二極體新的陽極材料,藉由NiO電洞注入有機層的能力,有效的改善有機發光二極體製程及元件操作電壓和起始電壓。

    Abstract
    Transparent conductive p-type nickel oxide (NiO) films were prepared by r.f. sputtering. The resistivity of 1.7×10-1Ω-cm was obtained for the non-intentionally doped NiO films prepared at a substrate temperature of 200℃ in pure oxygen sputtering gas (total pressure:10 mtorr,target ENI power:150 W). An average transmittance of about 40% in the visible range (400nm~800nm) was obtained for a 114nm thick NiO film.
    An ultra-thin layer of nickel oxide (NiO) was deposited on indium-tin oxide (ITO) as the anode of the organic light emitting diode (OLED) device because of its high work function and thus good hole injection ability. A lower turn-on voltage was about 3V resulting in a luminance of 1 cd/m2. However, slightly lower luminescence efficiency was observed for the device with the ITO/NiO anode. The devices consisting of a TPD layer only are the hole-only devices, which confirmed the enhancement of hole injection ability usung ITO/NiO.
    Our results suggest that ITO/NiO anode is a good material for hole injections in OLED devices. The NiO material layer deposited on ITO indeed improves the turn-on voltage of the OLED devices.

    總目錄 中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 序論 1 1-1 前言 1 1-2 有機發光二極體的優點 2 1-3 透明導電膜 4 1-4 研究動機與實驗方向 5 第二章 理論基礎 9 2-1 分子發光理論 9 2-2 有機發光二極體發光原理 10 2-2-1 理論極限 12 2-2-2 多層結構 13 2-3 有機材料的介紹 14 2-3-1 電洞傳輸材料 15 2-3-2 電子傳輸材料 16 2-4 電極材料 17 2-5 透明導電膜基本原理 19 2-5-1 透明導電膜導電機構 22 2-5-2 透明導電膜之光學性質 24 2-6 p型透明導電膜 26 第三章 實驗方法與步驟 38 3-1 前言 38 3-2 系統設備 38 3-2-1 真空鍍膜系統 38 3-2-2 磁控濺鍍系統 39 3-2-3 電漿電源供應器 40 3-2-4 濺鍍電源供應器 40 3-2-5 抽氣系統 41 3-2-6 壓力檢測系統 41 3-2-7 流量控制系統 41 3-2-8 溫度量測系統 42 3-3 實驗藥品材料 42 3-3-1 實驗材料 42 3-3-2 實驗藥品與氣體 43 3-4 實驗步驟 43 3-4-1 ITO基板前處理之實驗步驟 43 3-4-2 ITO基板沈積NiO透明導電膜實驗步驟 44 3-4-3 真空蒸鍍之實驗步驟 45 3-5 分析與鑑定 45 3-5-1 膜厚與鍍膜速率的測定 46 3-5-2 薄膜結構分析 46 3-5-3 電性分析 46 3-5-4 Seebeck量測p-type 或 n-type 47 3-5-5 光學性質的量測 47 3-5-6 有機膜厚與鍍膜速率的測定 47 3-5-7 表面型態的觀察 48 3-5-8 電壓-電流-輝度的量測 48 3-5-9 薄膜組成及鍵結型態分析 48 第四章 結果與討論 57 4-1 前言 57 4-2 氧化鎳透明導電膜基本性質 58 4-2-1 鍍膜速率 58 4-2-2 電性分析與光學性質 59 4-2-3 XRD結構分析 60 4-2-4 ESCA表面分析 61 4-2-5 TEM分析 63 4-3 NiO對TPD元件電洞注入的影響 63 4-4 NiO對有機發光二極體元件的影響 65 4-4-1 NiO元件與ITO電漿處理元件比較 66 4-4-2 不同溫度NiO對元件影響 67 4-4-3 不同ICP RF power的NiO對元件的影響 68 4-4-4 NiO於元件製程之應用 70 第五章 結論 97 第六章 參考文獻 99 自述 103

    第六章 參考文獻
    1 P. Pope, H. P. Kallmann and P. J. Magnante, J. Chem. Phys., 38, 2042 (1963).
    2 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    3 J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990, 347, 359.
    4 吳忠幟;光訊,第73期1998年8月.
    5 李文達;液晶與顯示, 1996, 11, 155.
    6 古俊能;工業材料雜誌,第169期2001年1月,p.106.
    7 H. Kawazoe et al, Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions, MRS Bulletin, August p.28~p.36(2000).
    8 G. Mueller, Semiconductors and Semimetals, 64, 209,(New York:Academic Press) (2000).
    9 黃崇傑;電子與材料,第10期,p.333.
    10 H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Film 236(1993)27.
    11 林敬二;儀器分析,第五版(上冊),p.333.
    12 黃春輝著;光電功能超薄膜,北京:北京大學出版社,2001.
    13 顧鴻壽著;光電有機電激發光顯示器<技術及應用>,2001,p.30.
    14 陳壽安;光訊第79期1999年8月.
    15 M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature, 409, 494 (2001).
    16 Solid State Technology, P.32, March (2001).
    17 S. Panozzo, M. Armand, and O. Stephan, Appl. Phys. Lett., 80, 679(2002)
    18 L. C. Palilis, D. G. Lidzey, M. Redecker, D. D. C. Bradley, M. Inbasekaran, E. P. Woo, and W. W. Wu, Synth. Met., 111-112(2000)159-163
    19 S. A. Vanslyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
    20 P. Fenter, F. Schreibler, V. Bulovic, and S. R. Forrest, Chem. Phys. Lett. 277, 521 (1997).
    21 F. Papadimitrakopolus, X. M. Zhang, and K. A. Higginson, IEEE J. Selec.Top. Quantum Electron. 4, 49 (1998)
    22 林國森,電子與材料,第8期,p.124.
    23 M. B. Huang, K. McDonald, J. C. Keay, Y. Q. Wang, S. J. Rosenthal, R. A. Weller, L. C. Feldman, Appl. Phys. Lett. , 1998, 73, 2914.
    24 Z. B. Deng, X. M. Ding, S. T. Deng, W. A. Gambling, Appl. Phys. Lett. , 1999, 74, 2227.
    25 Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai., Appl. Phys. Lett. 65, 807 (1994)
    26 C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 68, 2679 (1996).
    27 C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).
    28 S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A: Mater. Sci. Process. 68, 447 (1999).
    29 I M. Chan, W. C. Cheng, and F. C. Hong, Appl. Phys. Lett. 80, 13 (2002).
    30 S. F. J. Appleyard, and M. R. Willis, Opt. Mater. 9, 120 (1998).
    31 李玉華,”透明導電膜及其應用”,科儀新知,第十二卷第一期,(1990)94~102.
    32 S. M. Tadayyon, K. Griffiths, P. R. Norton, C. Tripp, Z. Popovic, J. Vac. Sci. Technol. A17(1999) 1773.
    33 K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films,102(1983)1~46.
    34 蔡瑛修;”以感應式偶合電漿輔助磁控濺鍍法於低溫成長ITO膜”,國立成功大學化工所碩士論文 (2000).
    35 楊明輝,工業材料雜誌,第179期,p.134.
    36 H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389 (1997) 939.
    37 Z. M. Jarzebski, Oxide Semiconductors, published by Wydawnictwa Naukowo-Techniczne, first edition 1973, ch.10.
    38 E. Antolini, J. Mater. Sci., 27(1992)3335
    39 P. Lunkenheimer, A. Loidl, C. R. Ottermann and K. Bange, Phys. Rev. B, 44(1991)5927.
    40 Yue Wang, Hao Gong, Furong Zhu, Ling Liu, Lei Huang, A.C.H. Huan, Mater. Sci. and Engineering B85 (2001) 131-134.
    41 J. Olivier, B. Servet, M. Vergnolle, M. Mosca, and G. Garry, Synth. Met. 122, 87(2001).
    42 R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925(2001).
    43 D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, second Edition.
    44 溫志中,工業材料雜誌,第166期,p.140.
    45 D.A. Wruck, M.A. Dixon, M. Rubin, and S.N. Bogy, J. Vac. Sci. Technol. A9(4), Jul/Aug 1991, 2170.
    46 I. Hotový, J. Huran, J. Janík, and A. P. Kobzev, Vacuum 51, 157(1998).
    47 C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg(Editor), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota, 1979.
    48 Kitao, M., Izawa, K., Urabe, K., Komatsu, T., Kuwano, S. and Yamada, S., Jpn. J. Appl. Phys., 1994, 33, 6656.
    49 I. D. Parker, J. Appl. Phys. 75, 1656(1994).
    50 P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308(1996).
    51 Y. Kurosaka, N. Tada, Y. Ohmori, and K. Yoshino, Synth. Met. 102, 1101(1999).
    52 Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett. 74, 2227(1999).
    53 Soumyadeb Ghosh and Olle Inganäs, Synth. Met. 121(2001) 1321-1322

    下載圖示 校內:2007-07-10公開
    校外:2007-07-10公開
    QR CODE