簡易檢索 / 詳目顯示

研究生: 郭美德
Kuo, Mei-Te
論文名稱: 金屬矽酸鹽和鋁酸鹽孔洞性複合材料之合成與應用研究
A Study on the Synthesis and Applications of the Metal-Silicates and -Aluminates
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 金屬矽酸鹽孔洞材料活性氧化鋁共沉澱法水熱重組法螢光粉
外文關鍵詞: metal-silicate, active alumina, catalyst, adsorbent, phosphor
相關次數: 點閱:134下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於,利用簡單且快速的方式合成出具高比表面積及高金屬分散性的孔洞材料,並尋找出其應用性。研究中發現此類型的材料,依照金屬氧化物的組成不同,可分別應用於催化觸媒、吸附劑以及螢光材料。
    藉由Pauling所提出「具有不同結晶尺寸的層狀物,在彼此互相結合下會自發性的捲曲」,因此使用不同的載體單載金屬氧化物,在水熱重組作用後會形成各種特殊結構的孔洞材料 。合成Cu/Fe-silicate孔洞材料,利用矽酸鹽和金屬離子互相螯合的概念,使金屬離子能夠均勻分散在整個架構中,形成amorphous結構的金屬矽酸鹽,藉由水熱提供能量使材料進行重組,得到結構更穩定的類管狀Cu/Fe-silicate。至於合成Cu/Fe-aluminate孔洞材料,則是將金屬氫氧化物沉澱於活性氧化鋁的孔洞中,水熱過程gibbsite的晶格結構逐漸消失轉變成絲綢片狀的結構。
    藉由反應參數的變動如:反應環境pH值、金屬離子/載體比例、水熱時間等,可達到操控表面積及孔洞結構,另外,以硫酸銅廢液作為銅離子前驅物進行相同步驟合成,一樣能合成出具高比表面積Cu/Fe-silicate及Cu/Fe-aluminate孔洞材料,對於成本考量及綠色化學上有一定的優勢。將這類孔洞材料進行煅燒後,在結構中形成高分散度的金屬氧化物活性中心,可用來作為催化觸媒材料。
    引入共沉澱的概念,進行nickel-silicate的合成,在反應過程中將鎳離子廢液和矽酸鹽互相螯合,形成amorphous的沉澱物,使濾液中鎳離子濃度能符合放流水排放標準,不但能夠降低實驗成本,且製程對環境是友善的。以此手法合成的產物,具有高比表面積,可應用於廢水處理以及工業上廢氣的吸附上。目前與台塑公司合作處理水中氨氮離子的移除,也具有良好的效果。
    Zn-silicate和Y-silicate皆具有很高的能階空隙,因此可透過摻雜不同離子,得到不同發光波段的螢光粉。針對溶膠凝膠法做研究,以溫和的反應條件、減短製程時間的一鍋法合成出發光效率佳的無機螢光材料。
    Zn2SiO4:Mn2+,前驅物Mn/Zn-silicate在水熱過程中會進行拆解重組,形成主結構為捲曲片狀的Zn-stevensite,經過900oC煅燒後,主體結構轉相形成α-Zn2SiO4,活化劑在此結構中能有較佳的螢光強度。反應過程中Mn2+會取代晶格內的Zn2+,成為螢光材料中的發光中心,於300 nm紫外光照射下可發出綠色螢光;Zn2SiO4: Eu3+,在未煅燒的情況下,屬於amorphous的Eu/Zn-silicate結構,煅燒900oC後轉相形成α-Zn2SiO4,於240 nm紫外光照射下可發出紅色螢光。Zn2SiO4: Eu3+在500oC煅燒下就能夠形成高螢光強度的產物,且具有高比表面積,吸附水中硫化物後會使螢光強度下降,因此可應用於快速檢測硫化物上。Y2SiO5: Ce3+,藍色螢光會以yttrium-silicate為主體結構,水熱後形成amorphous的結構,與Ce3+螯合後,Ce3+會取代Y3+的位置,藉由900oC煅燒使產物轉相為Y2SiO5,於340 nm的紫外光激發下可發出藍色螢光。

    To mimic the formation of the clay minerals in nature, we provided a facile and simple method to prepare metal-silicate material. To prepare the porous metal-silicate, the amorphous metal-silicate was prepared by simultaneously adding NaOH(aq) and metal-ion solution to sodium silicate solution. Then the resulted amorphous metal-silicate is hydrothermally treated under alkaline condition for reconstruction of the metal-silicate composites. The effect of pH value, the metal to silica ratio, hydrothermal time, metal-ion sources, and other experimental parameters were discussed in detail. We also used active alumina as supporter to prepare metal-aluminate. The resulted materials including Cu/Fe-silicate, Cu/Fe-aluminate, nickel-silicate, Mn/Zn-silicate, Eu/Zn-silicate, and Ce/Y-silicate. In practice, these porous metal-silicate and aluminate materials demonstrate high performances to be used as catalysts、adsorbents and phosphors.

    第一章 緒論 1 1.1 矽酸鹽的基本概念 1 1.1.1 頁矽酸鹽(phyllosilicates)的簡介 3 1.2 活性氧化鋁(Activated Alumina)的基本概念 4 1.3 結合金屬氧化物複合材料 5 1.3.1 結合金屬氧化物複合材料的合成方法 6 1.4 螢光材料的基本介紹 7 1.4.1 發光原理 9 1.4.2 能量轉換機構 11 1.4.3 史托克位移 13 1.4.4 影響螢光發光效率的因素 14 1.4.5 螢光材料的製備方法 16 1.4.6 Zn2SiO4 的介紹 19 1.4.7 Y2SiO4 的介紹 20 第二章 藥品、步驟、儀器 21 2.1 化學藥品 21 2.2 實驗步驟與流程示意圖 22 2.2.1 實驗流程 水熱重組法製備copper/iron-silicate 22 2.2.2 實驗流程 水熱重組法製備copper/iron-aluminate 22 2.2.3 實驗流程 水熱重組法製備nickel-silicate 23 2.2.4 實驗流程 共沉澱法製備Zn2SiO4:Mn2+ 綠光螢光粉 24 2.2.5 實驗流程 共沉澱法製備Zn2SiO4:Eu3+ 紅光螢光粉 25 2.2.6 實驗流程 螯合法製備Y2SiO4:Ce3+ 藍光螢光粉 25 2.3 儀器鑑定分析 27 2.3.1 穿透式電子顯微鏡(TEM) 27 2.3.2 氮氣等溫吸附/脫附測量 27 2.3.3 X-射線粉末繞射光譜(Powder X-Ray Diffraction; PXRD) 31 2.3.4 全反射红外光谱法 (Attenuated Total Reflectance;ATR) 32 2.3.5 螢光光譜儀 (Fluorescence Spectrophotometer) 32 2.3.6 可見光紫外光分光光譜儀(UV/VIS Spectrophotometer) 33 2.3.7 能量分散光譜儀 (Energy Dispersive Spectrometer;EDX) 33 2.3.8 火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer;AA) 34 第三章 以水熱重組法制備copper/iron 孔洞材料 35 3.1 研究目的與動機 35 3.2 水熱重組法製備copper/iron-silicate 36 3.2.1 調控反應pH值對copper/iron-silicate的影響 36 3.2.2 改變前驅物Cu/SiO2莫耳比對copper/iron-silicate的影響 39 3.2.3 改變鐵含量對copper/iron-silicate的影響 41 不同鐵含量之熱穩定探討 43 3.2.4 改變水熱時間 44 3.2.5 前驅物來源不同的影響 46 3.2.6 反應機構的推導 47 3.3 水熱重組法製備copper/iron-aluminate 49 3.3.1 調控反應pH值對copper/iron-aluminate的性質影響 49 3.3.2 改變水熱時間對copper/iron-aluminate的性質影響 51 3.3.3 調整前驅物Cu/Al2O3莫耳比例對產物的性質影響 53 3.3.4 改變鐵含量對copper/iron-aluminate的性質影響與熱穩定探討 55 不同鐵含量之熱穩定探討 56 3.3.5 反應機構的推導 58 3.4 應用-以水熱重組法製備copper/iron 孔洞材料應用於甲醇產氫 60 3.4.1 甲醇產氫的反應系統 60 3.4.2 copper/iron-silicate應用於甲醇產氫 61 3.4.3 copper/iron-aluminate應用於甲醇產氫 62 第四章 以水熱重組法制備nickel-silicate孔洞材料 64 4.1 研究目的與動機 64 4.2 水熱重組法製備nickel-silicate 65 4.2.1 調控反應pH值對產物的性質探討 65 4.2.2 反應總水量對產物的性質影響 68 4.2.3 改變Ni/SiO2莫耳比例對產物的性質影響 69 4.2.4 使用不同鹼源對產物性質的影響 71 4.2.5 水熱時間對反應的影響 73 4.2.6 反應機構的推導 75 4.3 應用-以水熱重組法製備nickel-silicate應用於水中氨氮處理 76 4.3.1 nickel-silicate移除水中NH3 76 4.3.2 nickel-silicate移除台塑廢水中的NH4+ 78 第五章 以一鍋法製作螢光粉 79 5.1 研究目的與動機 79 5.2 以水熱重組法製備Zn2SiO4:Mn2+綠色螢光材料 80 5.2.1 反應環境pH值對Zn2SiO4: Mn2+亮度的影響 80 5.2.2 改變Zn/SiO2莫耳比例對Mn /Zn-silicate結晶度的影響 82 5.2.3 Mn2+添加量對Zn2SiO4: Mn2+亮度的影響 84 5.2.4 水熱時間對Zn2SiO4: Mn2+亮度的影響 85 5.2.5 反應機構的推導 87 5.3 以水熱重組法製備Zn2SiO4: Eu3+紅色螢光材料 88 5.3.1 Eu3+含量對Zn2SiO4: Eu3+亮度的影響 88 5.3.2 使用不同鹼源對Zn2SiO4: Eu3+亮度的影響 89 5.3.3 改變Zn/SiO2莫耳比例對Eu/Zn-silicate結晶度的影響 90 5.3.4 水熱時間對Zn2SiO4: Eu3+亮度的影響 93 5.3.5 不同煅燒溫度對螢光強度的影響 94 5.3.6 應用-高表面積螢光粉快速檢測硫化物 95 5.4 以水熱重組法製備Y2SiO5: Ce3+藍色螢光材料 97 5.4.1 反應環境的pH值對Ce/Y-silicate產物的性質影響 97 5.4.2 改變Y/SiO2莫耳比例對Y2SiO5:Ce3+亮度的影響 99 5.4.3 Ce3+含量對Y2SiO5:Ce3+亮度的影響 100 5.4.4 水熱時間對Y2SiO5:Ce3+亮度的影響 101 5.4.5 不同煅燒溫度對螢光強度的影響 102 5.4.6 反應機構的推導 103 第六章 總結 104 參考文獻 105

    1. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
    2. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    3. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
    4. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
    5. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    6. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    7. P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. L. LeLoarer, J. P. Jolivet, and C. Froidefont, In Handbook of Porous Materials, Vol. 5, Edited by F.Schüth, K.Sing, and J.Weitkamp. Wiley-VCH, New York, 2002.
    8. L. D. Hart, Alumina Chemicals Science and Technology Handbook. The American Ceramic Society, OH, USA, 1990.
    9. W. H. Gitzen, Alumina as a Ceramic Material. The American Ceramic Society, OH, USA, 1970.
    10. Klein,C. and Hurlbut, Jr. C. S.(1993), Manual of Mineralogy, 21st Ed., John Wiley & Sons, New York.
    11. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
    12. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
    13. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
    14. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
    15. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
    16. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
    17. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    18. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
    19. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
    20. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
    21. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
    22. D. R. Rolison, Science, 2003, 299, 1698-1701.
    23. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
    24. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
    25. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
    26. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
    27. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
    28. Phosphor members committee(Ed), Phosphors handbook, tokyo :ohm society,1987 .
    29. 中國地質大學-精品課程網, 第二十一章第四節.
    30. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 1999, 138, 107-147.
    31. G. Blasse and B.C.“Grabmaier,Luminescent Materials”,1994
    32. R.C. Popp,“Luminescence and the solid state”,1991
    33. Dong Wang, Qingrui Yin, Yong xiang Li,Minquan Wang, J.Electrochem.Soc., 149, H65-H67, 2002.
    34. W.R.Blumenthal and D.S.Philips, J.Am.Ceram.Soc, 79, 1047, 1996.
    35. A.Ikesue and I.Furusato, J.Am.Ceram.Soc.78,225, 1995
    36. H. Yamamoto, Phosphor Global Summit, March 19, 2003, Phoenix, Arizona, USA.
    37. Gispert, J.R. (2008). Coordination Chemistry
    38. Y.C.Kang,S.B.Park,Mater.Res.Bull., 35,1143, 2000
    39. T.Tani,L.Madler, Part.Syst.Charact., 19, 354, 2002
    40. M.H.Grant, Encyclopedia of Chemical Technology,4th ed, 21.387, 1998
    41. L.Xie,A.Ncoormack, J.Electro.Soc., 150,H7, 2003
    42. G. Blasse and B.C.“Grabmaier,Luminescent Materials”,1994
    43. R.C. Popp,“Luminescence and the solid state”,1991
    44. 劉如熹、紀喨勝,“紫外光發光二極體用螢光介紹”2003
    45. P.Atkins and L.Jones, “Chemistry molecules,Matter,and Change”,1997
    46. 劉如熹、王健源,“白光發光二極體製作技術”2001
    47. Xinguo Zhang, J. Phys. Chem. C, 2014, 118 (14), 7591–7598
    48. W. T. Lu, A. K. Singh, S. A. Khan, D. Senapati, H. T. Yu and P. C. Ray, J Am Chem Soc, 2010, 132, 18103-18114.
    49. F. L. Chen, I. W. Sun, H. P. Wang and C. H. Huang, J Nanomater, 2009, 1-4.
    50. J. A. Melero, G. Calleja, F. Martinez and R. Molina, Catal Commun, 2006, 7, 478-483.
    51. Y. Liu and M. Liu, Adv Funct Mater, 2005, 15, 57-62.
    52. D. J. Maxwell, J. R. Taylor and S. M. Nie, J Am Chem Soc, 2002, 124, 9606-9612.
    53. Z. Y. Zhong, V. Ng, J. Z. Luo, S. P. Teh, J. Teo and A. Gedanken, Langmuir, 2007, 23, 5971-5977.
    54. S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha and T. Punniyamurthy, J Org Chem, 2009, 74, 1971-1976.
    55. C. Van Der Grift, P. Elberse, A. Mulder and J. Geus, Applied catalysis, 1990, 59, 275-289.
    56. M. Srinivas, P. Srinivasu, S. K. Bhargava and M. L. Kantam, Catalysis Today, 2013, 208, 66-71.
    57. H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nature communications, 2013, 4.
    58. 行政院環保署,石油化學業放流水標準
    59. Tiago Pinheiro Braga, Elisane Longhinotti, Applied Catalysis A: General 362 , 2009, 139–146
    60. F.S. Yen, R.J. Yang, P.C. Yu, 以單水鋁石(Boehmite)製造α-氧化鋁微粒粉末的研究, 2010
    61. 嚴富士, 張沛翎, 奈米級α-氧化鋁粉體由三水鋁石談起, 2006
    62. GrantSM,JaroniecM.Effectofacidconcentrationonporesizeinpolymer-templatedmesoporousalumina.JMaterChem2012;22:86–92.
    63. PatraAK,DuttaA,BhaumikA.Self-assembledmesporous-Al2O3 spherical nanoparticles and theirefficiency fortheremovalo farsenic from water. JHazard Mater2012;201–202:170–7.
    64. S. Sá, H. Silva, L. Brandão, J. M. Sousa and A. Mendes, Applied Catalysis B: Environmental, 2010, 99, 43-57.
    65. W. Gu, J.-P. Shen and C. Song, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 2003, 48, 804.
    66. C.-C. Li, Y.-W. Chen, R.-J. Lin, C.-C. Chang, K.-H. Chen, H.-P. Lin and L.-C. Chen, Chemical Communications, 2011, 47, 9414-9416.
    67. W Wiese, B Emonts, R Peters - Journal of Power Sources, 1999 – Elsevier
    68. 唐存宏,工業廢水氨氮處理概述,環保技術與法規資訊電子報第105期
    69. 李中光,劉新校,侯佳蕙,環保簡訊,21期,淺談物理化學法在處理氨氮廢水上之應用
    70. 王書任,林仁鈞,“讓LED發光的功臣—螢光粉”,2009
    71. V. B. Bhatkar, S. K. Omanwar, S. V. Moharil, Phys. Stat. Sol., 2002, 191, 272-276.
    72. T. H. Cho, H. J. Chang, Ceramics International, 2003, 29, 611-618.
    73. R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y. Zhang, S. Buddhudu, Mater. Sci. Eng. B, 2003, 100, 136-141.
    74. M. Takesue, H. Hayashi, R. L. Smith, Prog. Cryst. Growth Charact. Mater., 2009, 55, 98-124.
    75. P. V. Ramakrishna, D. B. R. K. Murthy, D. L. Sastry, Ceramics International, 2014, 40, 4889-4895.
    76. E. F. Medvedev, A. Sh. Komarevskaya, Glass Ceram., 2007, 64, 6-10.
    77. P. Ramakrishna, D. Murthy and D. Sastry, Ceramics International, 40, 4889-4895, 2014
    78. K. S. Sohn, B. Cho and H. D. Park, Journal of the American Ceramic Society, 82, 2779-2784, 1999
    79. 杜志輝,“Zn2SiO4摻雜銪螢光體之發光特性研究”,2005
    80. R. C. Alig and S. Bloom, Cathodoluminescent efficiency. J. Electrochem. Soc., 24 (7), 1136 (1977).
    81. X.Ouyang et al., Thin solid films., 254, 268-272 (1995).
    82. G. A. Parks, Chem. Rev., 1965, 65, 177-198.
    83. Y. Jiang, J. Chen, Z. Xie, L. Zheng, Mater. Chem. Phys., 2010, 120, 313-318.
    84. C. R. Ronda, T. Amrein, J. Lumin., 1996, 69, 245-248.
    85. T. S. Copeland, B. I. Lee, J. Qi, A. K. Elrod, J. Lumin., 2002, 97, 168-173.
    86. J. Wan, Z. Wang, X. Chen, L. Wu, W. Yu, Y. Qian, J. Lumin., 2006, 121, 32-38.
    87. M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, R. L. Smith, J. Solid State Chem., 2008, 181, 1307-1313.
    88. Xianping Fan, Minquan wang, Zhiyu Wang, Material Science and Engineering, 1997, 252.
    89. Xianping Fan, Minquan wang, J.Phys.Chem Solid ,1996,57,1259.
    90. G Blasse and B.C. Grabmaier, “Luminescence Materials”, Springer-Verlag, Berlin Heidelberg, Germany,1994.

    下載圖示 校內:立即公開
    校外:2020-07-05公開
    QR CODE