簡易檢索 / 詳目顯示

研究生: 陳坤隆
Chen, Kun-Lung
論文名稱: 電子封裝材料中新型潛含性觸媒之研究
Synthesis and Characterization of New Thermal Latency Catalysts for Epoxy-Phenolic Resins in electronic packaging Material.
指導教授: 申永輝
Shen, Yun-Hwei
共同指導教授: 溫紹炳
Wen, Shaw-Bing
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 127
中文關鍵詞: 潛含性觸媒環氧樹脂聚乙二醇封裝材料
外文關鍵詞: PEG, Imidazole, thermal latent catalysts, epoxy resins
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 封裝材料中常使用的觸媒可分成Imidazole 系列、Diazabicyclic 系列(DBU和DBN)和Phenolic等系列,文獻也發現將不同系列的觸媒掺混使用,封裝材料加入上述觸媒可使高分子材料物性改質提昇。由於封裝材料屬於活性化合物 (B-stage compound),當觸媒之反應性太強,會造成封裝材料儲存及運送過程不易,須在低溫條件下運送或儲存操作。因此;開發新型之潛含性觸媒,為近年來業界所迫切之需求。而良好的潛含性觸媒需具備有三種條件,一、在封裝過程溫度(100–175℃)下能快速硬化。二、低溫下可使封裝材料無限期儲存。三、對封裝材料不會有負面性質影響。
    先前;本實驗室已成功開發含Imidazole 之熱分解型之潛含性觸媒,包含有1-Tosyl-imidazole 、1,1’-Oxalyldiimidazole、1-Trityl-imidazole 、N-Phenyl-imidazole-1-carboxamide、3- (Diphenylphosphinoyl)imidazole、tert-Butyl 1H-imidazole-1-carboxylate 和 1-[ (Pivalyloxy)methyl]imidazol,此一系列熱分解型含Imidazole觸媒皆較目前市售Imidazole衍生物觸媒具良好之潛含性。接著實驗室也成功發展出一系列有機共軛酸鹼系統的潛含性觸媒,利用分子銜接有機酸官能基,而有效地改變觸媒於封裝材料環氧樹脂中的潛含性,其有機共軛酸鹼觸媒為3-Phenylpropanoic acid、 H-Phe-OH 、H-His-OH 、 Boc-His-OH 、 Urocanic acid 、 3- (Imidazol-4-yl)propionic acid 和 Histamine。延續性研究又開發出一系列共軛酸鹼双性雜環分子衍生物(Amphiphatic Piperazine, Pyrazine, and Pyridine Derivaties),由物化性質測試証明有機羧酸官能基修飾的雜環分子Pyrazine、Pyridine、Piperazine衍生物,皆可做為良好潛含性觸媒,擁有較佳的儲存時間。
    再者聚乙二醇(PEG) 分子兩端有醇基,因此具高度親水性,能進行酯化和醚化反應。近年來,以化學鍵結方式改質的聚乙二醇,正廣泛的熱烈被開發和探討中。因此;本論文以不同分子量聚乙二醇和一系列Imidazole衍生物作用,合成出一系列PEG-imidazole之潛含性觸媒,應用封裝材料上,並探討其潛含性和相關之物化性質。論文內容分成三部份。第一部份以PEG1000、PEG2000、PEG5000與Imidazoel 以錯化合的方式形成一系列Imidazole / PEG complex,包含Imidazole / PEG1000、Imidazole / PEG2000及 Imidazole / PEG5000 complex,進而探討其一系列Imidazole / PEG complex觸媒相對於未修飾Imidazole之潛含性,也進一步探討其相關之物化性質。由實驗結果得知此一系列Imidazole / PEG complex皆較未修飾Imidazole具有良好之潛含性,也維持與未修飾Imidazole在封裝材料相同之物化性質。
    第二部份以不同分子量聚乙二醇的PEG (MW = 200、400、600 和1000)與Imidazole以合成的方式,合成出EG200-imidazole、PEG400-imidazole、PEG600-imidazole和PEG1000-imidazole 潛含性觸媒,經黏度測試其潛含性皆較市售 2E4MZ-CN 和 Imidazole良好。第三部份將以 PEG600 和Imidazole、4-Methylimidazole (4MZ)、1-(2-Hydroxyethyl)imidazole和5-(Hydroxymethyl)imidazole 合成出一系列PEG600-imidazole衍生物,包括 PEG600-imidazole、PEG600-4-methylimidazole、PEG600-1-(2-hydroxyethyl)imidazole及PEG600-5-(hydroxymethyl)imidazole。經物化性質測試,其潛含性皆較未修飾Imidazole為佳。由實驗結果得知將聚乙二醇(PEG)與Imidazole及其衍生物合成的化合物可形成一良好的潛含性觸媒

    Three Types of catalysts were usually applied in the molding compound of electronic industries which contain a series of imidazole, diazabicyclic derivatives (DBU and DBU) and phenolic compounds. Sometimes, the mixture compounds of diazabicyclic derivatives and phenolic compounds also were applied in the manufacture production. Due to the strong reactivity of these catalysts, the molding compounds must be storage at low temperature to prolong the pot-life. As a result, the latent catalysts have attracted much attention to maintain the long pot-life and improve the physical properties. A perfect latent catalyst for molding compound should have the following properties: (1) rapid cure at a moderately elevated temperature (100–175℃), (2) indefinite storage life for the catalyzed resin, and (3) no adverse effect on the properties of the cured material.
    We has successfully developed with thermal latent catalysts imidazole including 1-Tosyl-imidazole 、1,1’-Oxalyldiimidazole、1-Trityl-imidazole 、N-Phenyl-imidazole-1-carboxamide、3- (Diphenylphosphinoyl)imidazole、tert-Butyl 1H-imidazole-1-carboxylate and 1-[ (Pivalyloxy)methyl]imidazol, this series of thermal latent catalyst imidazole showed the better thermal latency than market imidazole dervatives catalyst. Then we were also developed a series of organic Lewis acid-base hybrids thermal latent catalyst, use Polymerization of diglycidyl ether of bisphenol A (DGEBA) with organic Lewis acid-base hybrids, the organic Lewis acid-base hydris catalyst including 3-Phenylpropanoic acid、 H-Phe-OH 、H-His-OH 、 Boc-His-OH 、 Urocanic acid 、 3- (Imidazol-4-yl)propionic acid and Histamine。Continuity of research and development a series of conjugate acid-base pairs of heterocyclic molecules derivatives (amphiphatic piperazine, pyrazine, and pyridine derivaties), proved the physical properties of organic acid-base group modify heterlocyclic molecules pyrazine、pyridine、piperazine derivatives, can be used a good latent catalyst.
    Furthermore, poly(ethylene glycol)s (PEGs) are very popular soluble supports due to they own the high hydrophilic alcohol group, the use of functional polyethylene glycols as soluble polymeric support sfor the synthesis of small orgnic molecules is currently receving a great dealof attention. Therefore, we use different molecular PEGs and a series imidazole derivatices sythese new type PEG-imidazole latent catalyst application applies to epoxy moldling compound we will investigation the physical properties of the mixture epoxy resin with peg-imdazole hybrids. In the experiment we will be divided into three parts. First part project using midazole with various molecular weights poly(ethylene glycol)s, including PEG-1000, 2000, and 5000 complex of the formation into the Imidazole / PEG complex,contains Imidazole / PEG1000 complex、Imidazole / PEG2000 complex and Imidazole / PEG5000 complex, were blended and evaluated as thermal latent catalysts for the polymerization of diglycidyl ether of bisphenol A (DGEBA) under liquid–solid two phase systems.
    In the second section, we used different molecularPEGs (MW = 200, 400, 600, and 1000) with Imidazole synthesis EG200-imidazole、PEG400-imidazole、PEG600-imidazole and PEG1000-imidazole latent catalyst by viscosity measure the PEGs-Imidazole better latency catalyst than commercial latent catalysts 2E4MZ-CN and imidazole.
    Finally, we treated PEG600 with imdazole derivative including imdazole, 4-Methylimidazole (4MZ), 1-(2-Hydroxyethyl)imidazole, and 5-(Hydroxymethyl)imidazole to prepare PEG600-imdazole derivatives, such as PEG600-imidazole, PEG600-4-methylimidazole, PEG600-1-(2-hydroxyethyl)imidazole, and PEG600-5-(hydroxymethyl)imidazole. The testing results of the physical and chemical properties, PEG600-imdazole derivatives showed the better potential latency than the unmodified imidazole.

    目 錄 頁次 第一章 緒 論 ..................................................................1 1-1前言 ...........................................................................................................1 1-2電子封裝技術.............................................................................................2 1-3封裝材料的組成.......................................................................................14 1-3-1環氧樹脂...............................................................................................16 1-3-2環氧樹脂的硬化劑...............................................................................21 1-3-3觸媒.......................................................................................................23 1-3-4填充料...................................................................................................35 1-3-5偶合劑...................................................................................................35 1-3-6脫模劑...................................................................................................35 1-3-7著色劑...................................................................................................36 第二章實驗部份................................................................37 2-1實驗用藥品...............................................................................................37 2-2實驗使用儀器...........................................................................................39 2-3合成步驟及光譜資料...............................................................................40 2-3-1 Imidazole / PEGs 錯合.........................................................................40 2-3-2 PEG(200、400、600、1000)-Imidazole 觸媒...................................41 VIII 2-3-3 PEG600-Imidazole及其衍生物製備....................................................43 第三章結果與討論................................................................45 3-1環氧樹脂的選擇.......................................................................................45 3-2研究動機...................................................................................................46 3-3 PEG系列觸媒合成及高分子物性量測 ...................................................52 3-3-1 Imidazole / PEGs..................................................................................52 3-3-1-1 . Imidazole / PEGs Blend....................................................................52 3-3-1-2 Imidazole / PEGs 硬化反應機制.....................................................54 3-3-1-3 Imidazole / PEGs Blend 黏度測試(Measurement of Pot-life.) ...................................................................................55 3-3-1-4 Imidazole / PEGs Blend熱重 / 示差掃瞄熱卡計測試(Thermo Gravimetry / Differential Thermal Analyzer,TG/DTA) ...............................61 3-3-1-5 Imidazole / PEGs Blend活化能測試(The cure activation energy).......................................................................69 3-3-1-6 Imidazole / PEGs Blend玻璃轉移溫度 (Tg)測試............................70 3-3-1-7 Imidazole / PEGs Blend反應轉化率計算.........................................73 3-3-1-8 Imidazole / PEGs (24、25、26) 結論..............................................74 3-3-2 PEG(200、400、600、1000)-Imidazole 觸媒...................................76 3-3-2-1. PEGs-Imidazole合成........................................................................76 3-3-2-2. PEGs-imidazole(27–30) NMR and IR光譜量測..............................78 3-3-2-3 PEGs-Imidazole(27–30) 觸媒硬化反應機制...................................79 3-3-3-4 PEG(200、400、600、1000)-imidazole 黏度測試(Measurement of IX Pot-life.)....................................................................................................81 3-3-2-5 PEG(200、400、600、1000)-imidazole熱重/示差掃瞄熱卡計(Thermo Gravimetry/Differential Thermal Analyzer,TG/DTA).................................84 3-3-2-6 PEG(200、400、600、1000)-imidazole 活化能測試(The cure activation energy)............................................................................................89 3-3-2-7 PEG(200、400、600、1000)-imidazole 玻璃轉移溫度 (Tg)測試..............91 3-3-2-8 PEG(200、400、600、1000)-imidazole反應轉化率計算..............92 3-3-2-9 PEG(200、400、600、1000)-imidazole 結論................................94 3-3-3 PEG600-Imidazole Derivatives 觸媒...................................................95 3-3-3-1 PEG600-Imidazole 衍生物合成.......................................................95 3-3-3-2 PEG600-Imidazole(29、34-36) NMR and IR光譜量測...................98 3-3-3-3 PEG600-Imidazole(29、34-36)觸媒硬化反應機制.........................99 3-3-3-4 PEG600-imidazole衍生物黏度測試(Measurement of Pot-life.)....102 3-3-3-5 PEG600-imidazole 衍生物熱重/示差掃瞄熱卡計分析 (Thermo Gravimetry/Differential Thermal Analyzer,TG/DTA)...............................105 3-3-3-6 PEG600-imidazole 衍生物活化能測試(The cure activation energy)....................................................................................................112 3-3-3-7 PEG600-imidazole 衍生物玻璃轉移溫度 (Tg)測試...................115 3-3-3-8 PEG600-Imidazole Derivative 反應轉化率計算...........................117 3-3-3-9 PEG600-imidazole 衍生物結論.....................................................119 X 第四章結論 ..............................................................120 4-1結 論.......................................................................................................120 4-2建 議.......................................................................................................121 參考文獻 ..............................................................122 XI 表目錄 頁次 表1- 1常見的IC元件..........................................................................................................11 表1- 2半導體封裝材料組成與功能.................................................................................15 表1- 3特殊環氧樹脂硬化物之物性.................................................................................17 表1- 4研究Imidazole潛含性觸媒名稱.............................................................................30 表1- 5 Imidazole共軛酸鹼潛含性觸媒名稱.....................................................................32 表1- 6 Pyrazine和Piperazine潛含性觸媒名稱..................................................................34 表3-1 Imidazole / PEGs 觸媒名稱...................................................................................53 表3-2 Brook Field DV-II+ Pro黏度計的各種Spindle測量黏度範圍...............................57 表3-3環氧樹脂與觸媒Imidazole、24、25、26黏度起始時間點、600小時黏度值..59 表3-4環氧樹脂添加1、2、3和5 wt%觸媒 24、25、26之熱重/示差掃瞄熱分析數據...........................................................................................................................................67 表3-5 依Kissinger公式得到膠化活化能.........................................................................70 表3-6觸媒24-26 (10 wt%)與環氧樹脂混合之熱分析相關性質...................................71 表3-7 PEGs-imidazole 觸媒名稱.....................................................................................77 表3-8環氧樹脂與觸媒Imidazole、2E4MZ-CN、27、28、29、30黏度起始時間點、600小時黏度值。.....................................................................................................................83 表3-9 環氧樹脂添加1、2、3和5wt %觸媒 Imidazole and 2E4M-CN 和 PEG-imidazole (27–30) 熱重/示差掃瞄熱卡計分析數據.........................................................................85 表3-10 依 Kissinger equation.得到膠化活化能.............................................................90 XII 表3-11 PEG-imidazole 27–30與環氧樹脂混合之熱分析相關性質...............................91 表3-12 PEG600-imidazole Derivatives 觸媒名稱...........................................................97 表3-13環氧樹脂與觸媒1、29、31–36黏度起始時間點、600小時黏度值。.........104 表3-14 T環氧樹脂添加1、2、3和5wt %觸媒Imidazole (1), 4-Mthylimidazole (4MZ, 31), 1-(2-Hdroxyethyl)imidazole (32), 5-(Hdroxymethyl)imidazole (33) 和PEG600-imidazole catalysts (29、34–35) 熱重/示差掃瞄熱卡計分析數據................................................106 表3-15依 Kissinger equation.得到膠化活化能.............................................................114 表3-1環氧樹脂與Imidazole (1), 4-Methylimidazole (4MZ, 31), 1-(2-Hydroxyethyl)imidazole (32), 5-(Hydroxymethyl)imidazole (33), PEG600-imidazole catalysts 29、34–36. 混合之熱分析相關性質................................................................116 XIII 圖目錄 頁次 圖1- 1 塑膠雙列式構裝......................................................................................................4 圖1- 2 IC元件構造圖...........................................................................................................6 圖1- 3 IC製造流程...............................................................................................................7 圖1- 4電子晶片從設計到產品應用之製造.......................................................................8 圖1- 5電子晶片封裝程序...................................................................................................8 圖1- 6 輕薄短小為電子構裝需求之趨勢........................................................................10 圖1- 7 應用在封裝材料常見的環氧樹脂........................................................................18 圖1- 8 較特殊的環氧樹脂................................................................................................19 圖1- 9胺類與環氧樹脂的反應.........................................................................................21 圖1- 10酸酐與環氧樹脂的反應.......................................................................................21 圖1- 11酚類與環氧樹脂的反應.......................................................................................22 圖1- 12 TPP .....................................................................................................................23 圖1- 13 Imidazole...............................................................................................................23 圖1- 14 Benzoxazine潛含性觸媒......................................................................................24 圖1- 15 N-Benzylpyrazinium hexafluoroantimonate潛含性觸媒.....................................25 圖1-16 Imidazole環內N上的H互變異構..........................................................................26 圖1-17 Wang, L.和Wong, C. P.所研究的潛含性觸媒......................................................26 圖1-18 具立體障礙之Imidazole與環氧樹脂反應機構...................................................27 XIV 圖1-19 金屬路易士酸觸媒活化現象...............................................................................28 圖1-20 研究Imidazole潛含性觸媒結構...........................................................................29 圖1-21 Imidazole共軛酸鹼的潛含性觸媒........................................................................32 圖1-22 Pyrazine和Piperazine潛含性觸媒.........................................................................34 圖3-1 Diglycidylether of bisphenol A環氧樹脂................................................................45 圖3-2 BPH潛含性觸媒與環氧樹脂之反應機構..............................................................47 圖3-3 研究PEG-Imidazole電子封裝材料觸媒示意圖....................................................51 圖3-4 Imdazole / PEG複合催化劑....................................................................................52 圖3-5 Imidazole / PEGs錯合反應圖.................................................................................53 圖3-6 Imidazole / PEGs與環氧樹脂的反應機制.............................................................55 圖3-7 Brook Field DV-II+ Pro黏度計...............................................................................56 圖3-8 Imidazole / PEGs Blend 黏度測試結果.................................................................60 圖3-9環氧樹脂添加1、2、3、5 wt% Imidazole / PEG1000(24)之熱重/示差掃瞄熱分析圖.......................................................................................................................................62 圖3-10環氧樹脂添加1、2、3、5 wt% Imidazole / PEG2000(25)之熱重/示差掃瞄熱分析圖...................................................................................................................................63 圖3-11環氧樹脂添加1、2、3、5 wt% Imidazole / PEG5000(26)之熱重/示差掃瞄熱分析圖...................................................................................................................................65 圖3-12 Imidazole / PEGs 24-26活化能測定....................................................................70 圖3-13環氧樹脂與10 wt%觸媒24、25及26以DSC測量的Tg值..............................72 圖3-14環氧樹脂與Imidazole / PEGs觸媒聚合反應之溫度轉化率...............................73 XV 圖3-15 不同分子量PEGs-Imidazole結構........................................................................76 圖3-16 PEGs-imidazole 合成反應...................................................................................77 圖3-17 1H-NMR spectra of soluble PEG-imidazole catalysts 27–30 in CDCl solution (○: PEG, : PEG-imidazole, ◊: HO, □: CDCl, Δ: 過量 imidazole)................................78 圖3-18 FT-IR spectra of soluble PEG-imidazole catalysts 27–30.....................................79 圖3-19 PEGs-imidazole 觸媒(27–30).與環氧樹脂反應機制..........................................80 圖3-20 Imidazole, 2E4MZ-CN與PEGs-imidazole (27-30)添加環氧樹脂黏度測試結果圖3-21 環氧樹脂添加1–5 wt % PEG200-imidazole (27) 熱重/示差掃瞄熱卡計分析圖 ...........................................................................................................................................86 圖3-22環氧樹脂添加1–5 wt % PEG400-imidazole (28) 熱重/示差掃瞄熱卡計分析圖 ...........................................................................................................................................87 圖3-23環氧樹脂添加1–5 wt % PEG600-imidazole (29) 熱重/示差掃瞄熱卡計分析圖 ...........................................................................................................................................87 圖3-24環氧樹脂添加1–5 wt % PEG1000-imidazole (30) 熱重/示差掃瞄熱卡計分析圖 ...........................................................................................................................................88 圖3-25 PEGs-imidazole 27–30活化能測試.....................................................................90 圖3-26 環氧樹脂與10 wt % 的PEG-imidazole 27–30 Tg 值........................................92 圖3-27 環氧樹脂與PEG-imidazole (27–30) 觸媒聚合反應轉化率..............................93 圖3-28 PEG600-imidazole 及其衍生物合成反應...........................................................95 圖3-29 PEG600-imidazole 及其衍生物反應式...............................................................97 圖3-30 1H-NMR spectra of soluble PEG600-imidazole catalysts 29、34-36 in CDCl3 XVI solution (○: PEG, ◊: HO, □: CDCl, Δ: imidazole peak of PEG600-imidazole catalysts) ...98 圖3-31 FT-IR spectra of soluble PEG600-imidazole catalysts 29、34-36................................................................................................................99 圖3-32 PEG600-imidazole (29、34–36) 與環氧樹脂反應機制...................................101 圖3-33 Imidazole (1), 4-Methylimidazole (4MZ, 31), 1-(2-Hydroxyethyl)imidazole (32), 5-(Hydroxymethyl)imidazole (33) 和 PEG600-imidazole catalysts 29、34–35添加環氧樹脂黏度測試結果.........................................................................................................102 圖3-34 環氧樹脂添加1–5 wt % 4-Methylimidazole (31) 熱重/示差掃瞄熱卡計分析圖 .........................................................................................................................................108 圖3-35環氧樹脂添加1–5 wt %1-(2-Hdroxyethyl)imidazole (32) 熱重/示差掃瞄熱卡計 分析圖...............................................................................................................................108 圖3-36環氧樹脂添加1–5 wt % 5-(Hydroxymethyl)imidazole (33) 熱重/示差掃瞄熱卡計分析圖...............................................................................................................................108 圖3-37環氧樹脂添加1–5 wt % PEG600-imidazole (29) 熱重/示差掃瞄熱卡計分析圖...........................................................................................................................109 圖3-38環氧樹脂添加1–5 wt % PEG600-4MZ (34) 熱重/示差掃瞄熱卡計分析圖...110 圖3-39環氧樹脂添加1–5 wt % EG600-1-(2-hydroxyethyl)-Im (35,) 熱重/示差掃瞄熱 卡計分析圖.......................................................................................................................110 圖3-40環氧樹脂添加1–5 wt % PEG600-5-(hydroxymethyl)-Im (36) 熱重/示差掃瞄熱........................................................................................................................111 卡計分析圖圖3-41 Imidazole (1), 4-Methylimidazole (4MZ, 31), 1-(2-Hydroxyethyl) imidazole (32), X VII 5-(Hydroxymethyl)imidazole (33)和PEG600-imidazole catalysts 29、34–36.活化能測試........................................................................................................................113 圖3-42環氧樹脂與Imidazole (1), 4-Methylimidazole (4MZ, 31), 1-(2-Hydroxyethyl) imidazole (32), 5-(Hydroxymethyl)imidazole (33), 和PEG600-imidazole catalysts 29、34–36 的 Tg 值...............................................................................................................115 圖3-43 環氧樹脂與Imidazole (1), 4-Methylimidazole (4MZ, 31), 1-(2-Hydroxyethyl)imidazole (32), 5-(Hydroxymethyl)imidazole (33), PEG600-imidazole catalysts 29、34–36觸媒聚合反應轉化率......................................................................117 X VIII

    1 Buchanan, R. C. In Ceramic materials for electronics; M. Dekker: New
    York, 1986.
    2 Harper, C. A. In Electronic packaging and interconnection handbook,
    McGraw-Hill: New York, 1997.
    3 Ginsberg, G. In Electronic equipment packaging technology; Van Nostrand
    Reinhold: New York, 1992.
    4 Goosey, M. T. In Plastics for electronics; Kluwer Academic Publishers:
    Dordrecht, 1999.
    5 Godovsky, Y. K. In Speciality polymers/polymer physics; Springer Verlag:
    Berlin, 1989.
    6 Wong, C. P. In Polymers for electronic and photonic applications, Academic
    Press: Boston, 1993.
    7 Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda, A. J. Appl.
    Polym. Sci. 1998, 68, 1903.
    8 Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29, 759.
    9 Hale, A.; Macosko, C.W.; Bair, H. E. J Appl Polym Sci. 1989, 38, 1253.
    10 Farkas, A.; Strohm, P.F. J Appl Polym Sci. 1968, 12, 159.
    11 Wang, S.; Wong, C.P. International Symposium on Advanced Packagig
    Materials. 1999, 67.
    123
    12 Galego, N.; González, F.; Vazquez, A. Polymer International. 1996, 40,
    213.
    13 Scola, D. A., Developments in Reinforced Plastics, Vol. 4, ed. G. Pritchard.
    Elsevier Applied Science, London, 1984, pp 165.
    14 Wang, S.; Wong, C.P. International Symposium on Advanced Packagig
    Materials. 1999, 67.
    15 Wong, F. F.; Chen, K.-L.; Lin, C.-M.; Yeh, M.-Y. J. Appl Polym Sci 2007,
    104, 3292.
    16 Wong, F. F.; Lin, C. M.; Chen, K.-L.; Huang, J.-J.; Shen, Y.-H.; Macromol.
    Res. 2010, 18, 324–330.
    17 Chen, K.-L.; Lin, H.-C.; Huang, C.-S.; Shen, Y.-H.; Huang, J.-J.; Wong, F.
    F.; Lin, C. M.; Chen, K.-L.; Huang, J.-J. Polymer Journal 2009, 41,
    685–690.
    18 (a) M. Benaglia, M. Cinquini, F. Cozzi, Tetrahedron Lett. 1999, 40, 2019.;
    (b) R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, Chem. Eur. J.
    2000, 6, 133.; (c) J.W. Kim, J.-Ho. Kim, D.-H. Lee, Y.-S. Lee,
    Tetrahedron Lett. 2006, 47, 4745.
    19 Herz, H. G.; Kreuer, K. D.;Marier, J.;Scharfenberger, G.;Schuster, M.
    F. H..;Meyer, W. H.. Electrochimica Acta. 2003, 48, 2165.
    20 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
    124
    21 Park, S. J.; Kang, J. G.; Kwon, S. H. Maromol Mater Eng. 2004, 289, 413.
    22 Lee, J. K.; Choi, Y. Marcromolecular Reserch. 2002, 10, 34.
    23 Park, S. J.; Kim, T. J.; Lee, J. K. J Appl Polym Sci B: Polym Phys. 2000, 38,
    2114.
    24 Park, S.-J.; Kang, J.-G.; Kwon, S.-H. J. Polym. Sci., Part B: Polym. Phys.
    2004, 42, 3841.
    25 Silva, A. L.; Bordado, J. C. Catal. Rev. 2004, 46, 31.
    26 Lin, R. H.; Chen, C.-L.; Kao, L.-H.; Yang, P.-R. J. Appl. Polym. Sci. 2001,
    82, 3539.
    27 Chiao, N. B., UK Patent Application, BG2, 075, 521 A, 18 Nov. 1981.
    28 Galego, N., Vazquez, A., Riccardi, C. C. & Williams, R. J. J. J. Appl. Polym.
    Sci. 1992, 45, 607
    29 Abu-Abdoun, I. I.; Ali, A. Eur. Polym. J. 1993, 29, 1439.
    30 Endo, T.; Kikkawa, A.; Uno, H.; Sato, H. J. Polym.Sci., Polym. Lett. Ed.
    1989, 27, 73.
    31 Crivello, J. V.; Lee, J. L. Macromolecules. 1981, 14, 1141.
    32 Pappas, S. P.; Hill, L. H. J. Coat. Technol. 1981, 53, 43.
    33 Pillai, V. N. R. ; Mutter, M. Acc. Chem. Res. 1981, 14, 122.
    34 Ferreira, P.; Phillips, E.; Rippon, D.; Tsang, S. C. ; Hayes, W. J. Org. Chem.
    2004, 69, 6851.
    35 Sangermano, M.; Ortiz, R. A.; Urbina, B. A. P.; Duarte, L. B.; Valdez, A. E.
    125
    G.; Santos, R. G. Eur. Polym. J. 2008, 44, 1046.
    36 Munir, I. Z.; Dordick, J. S. Enzyme and Microbial Technology 2000, 26,
    337.
    37 Olsen, C. A.; Witt, M.; Jaroszewski, J. W.; Franzyk, H. Organic Lett. 2004,
    6, 1935.
    38 Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Pitillo, M. J. Org.
    Chem. 2001, 66, 3160.
    39 Y. Fang, H. Kang, W. Wang, H. Liu, X. Gao, Energy Convers. Manage.
    2010, 51, 2757.
    40 R. B. Greenwal, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug Del.
    Rev. 2003, 55 217.
    41 For recent development of linkers connecting small organic molecules to
    PEG see reference f and: (a) K. W. Jung, X. Zhao, K. D. Janda,
    Tetrahedron Lett. 1996, 37, 6491.; (b) X. Zhao, K. W. Jung, K. D.Janda,
    Tetrahedron Lett. 1997, 38, 977.; (c) X. Zhao, K. D. Janda, Tetrahedron
    Lett. 1997, 38, 5437.; (d) K. W. Jung, X. Zhao, K. D. Janda, Tetrahedron.
    1997, 53, 6645.
    42 S. Luo, S. Zhang, Y. Wang, A. Xia, G. Zhang, X. Du, D. Xu, J. Org. Chem.
    2010, 75, 1888.
    43 (a) D. L. Elbert, Acta Biomaterialia, 2011, 7, 31.; (b) Y. Fang, H. Kang, W.
    Wang, H. Liu, X. Gao, Energy Convers. Manage, 2010, 51, 2757.; (c) M.
    126
    E. Donaldson, L. C. Draucker, V. Blasucci, C. L. Liotta, C. A. Eckert,
    Fluid Phase Equilib. 2009, 277, 81.
    44 (a) Y. R. Ham, S. H. Kim, Y. J. Shin, D. H. Lee, M. Yang, J. Ind. Eng.
    Chem., 2010, 16, 556.; (b) S. K. Ooi, W. D. CooK, G. P. Simon, C. H.
    Such, Polymer, 2000, 41, 5639.; (c) M. S. Heise, G. C. Martin, J. Appl.
    Polym. Sci. 1990, 39, 721.; (d) M. S. Heise, G. C. Martin, Macromolecule.,
    1989, 22, 99.; (e) Y.-C. Chen, W.-Y. Chiu, K.-F. Lin, J. Appl. Polym. Sci.
    Part A Polym. Chem. 1999, 37, 3233.; (f) F. Ricciardi, W. A. Romanchick,
    M. M. Joullié, J. Appl. Polym. Sci. Polym. Chem. Edi. 1983, 21, 1475.; (g)
    A. Farkas, P. F. Strohm, J. Appl. Polym. Sci. 1968, 12, 159.; (h) A. Hale, C.
    W. Macosko, J. Appl. Polym. Sci. 1989, 38, 1253.
    45 Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym.
    Chem. 2001, 39, 187.
    46 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
    47 Tung. C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27, 569.
    48 Núñez, L.; Núñez, M. R.;Villanueva, M.; Castro, A.; Rial, B. J. Appl.
    Polym.Sci. 2002, 85, 366.
    49 Galego, N.; Gonzàlez, F. Polymer International. 1996, 40, 213.
    50 Park, S. J.; Kim, H. C.; Lee, H. I.; Suh, D. H. Macromolecules 2001, 34,
    7573.
    51 H. G. Herz, K. D. Kreuer, J. Marier, G. Scharfenberger, M. F. H. Schuster,
    127
    W. H. Meyer, Electrochimica Acta. 2003, 48, 2165.
    52 (a) M. Benaglia, M. Cinquini, F. Cozzi, Tetrahedron Lett. 1999, 40, 2019.;
    (b) R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, Chem. Eur. J.
    2000, 6, 133.; (c) J.W. Kim, J.-Ho. Kim, D.-H. Lee, Y.-S. Lee,
    Tetrahedron Lett. 2006, 47, 4745.
    53 J. Berger, F. Lohse, J. Appl. Polym. Sci. 1985, 30, 531.
    54 (a) P. Hodge, Chem. Soc. Rev. 1997, 26, 417.; (b) W. Li, B. Yan, J. Org.
    Chem. 1998, 63, 4092.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE