| 研究生: |
陳坤隆 Chen, Kun-Lung |
|---|---|
| 論文名稱: |
電子封裝材料中新型潛含性觸媒之研究 Synthesis and Characterization of New Thermal Latency Catalysts for Epoxy-Phenolic Resins in electronic packaging Material. |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 共同指導教授: |
溫紹炳
Wen, Shaw-Bing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 潛含性觸媒 、環氧樹脂 、聚乙二醇 、封裝材料 |
| 外文關鍵詞: | PEG, Imidazole, thermal latent catalysts, epoxy resins |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
封裝材料中常使用的觸媒可分成Imidazole 系列、Diazabicyclic 系列(DBU和DBN)和Phenolic等系列,文獻也發現將不同系列的觸媒掺混使用,封裝材料加入上述觸媒可使高分子材料物性改質提昇。由於封裝材料屬於活性化合物 (B-stage compound),當觸媒之反應性太強,會造成封裝材料儲存及運送過程不易,須在低溫條件下運送或儲存操作。因此;開發新型之潛含性觸媒,為近年來業界所迫切之需求。而良好的潛含性觸媒需具備有三種條件,一、在封裝過程溫度(100–175℃)下能快速硬化。二、低溫下可使封裝材料無限期儲存。三、對封裝材料不會有負面性質影響。
先前;本實驗室已成功開發含Imidazole 之熱分解型之潛含性觸媒,包含有1-Tosyl-imidazole 、1,1’-Oxalyldiimidazole、1-Trityl-imidazole 、N-Phenyl-imidazole-1-carboxamide、3- (Diphenylphosphinoyl)imidazole、tert-Butyl 1H-imidazole-1-carboxylate 和 1-[ (Pivalyloxy)methyl]imidazol,此一系列熱分解型含Imidazole觸媒皆較目前市售Imidazole衍生物觸媒具良好之潛含性。接著實驗室也成功發展出一系列有機共軛酸鹼系統的潛含性觸媒,利用分子銜接有機酸官能基,而有效地改變觸媒於封裝材料環氧樹脂中的潛含性,其有機共軛酸鹼觸媒為3-Phenylpropanoic acid、 H-Phe-OH 、H-His-OH 、 Boc-His-OH 、 Urocanic acid 、 3- (Imidazol-4-yl)propionic acid 和 Histamine。延續性研究又開發出一系列共軛酸鹼双性雜環分子衍生物(Amphiphatic Piperazine, Pyrazine, and Pyridine Derivaties),由物化性質測試証明有機羧酸官能基修飾的雜環分子Pyrazine、Pyridine、Piperazine衍生物,皆可做為良好潛含性觸媒,擁有較佳的儲存時間。
再者聚乙二醇(PEG) 分子兩端有醇基,因此具高度親水性,能進行酯化和醚化反應。近年來,以化學鍵結方式改質的聚乙二醇,正廣泛的熱烈被開發和探討中。因此;本論文以不同分子量聚乙二醇和一系列Imidazole衍生物作用,合成出一系列PEG-imidazole之潛含性觸媒,應用封裝材料上,並探討其潛含性和相關之物化性質。論文內容分成三部份。第一部份以PEG1000、PEG2000、PEG5000與Imidazoel 以錯化合的方式形成一系列Imidazole / PEG complex,包含Imidazole / PEG1000、Imidazole / PEG2000及 Imidazole / PEG5000 complex,進而探討其一系列Imidazole / PEG complex觸媒相對於未修飾Imidazole之潛含性,也進一步探討其相關之物化性質。由實驗結果得知此一系列Imidazole / PEG complex皆較未修飾Imidazole具有良好之潛含性,也維持與未修飾Imidazole在封裝材料相同之物化性質。
第二部份以不同分子量聚乙二醇的PEG (MW = 200、400、600 和1000)與Imidazole以合成的方式,合成出EG200-imidazole、PEG400-imidazole、PEG600-imidazole和PEG1000-imidazole 潛含性觸媒,經黏度測試其潛含性皆較市售 2E4MZ-CN 和 Imidazole良好。第三部份將以 PEG600 和Imidazole、4-Methylimidazole (4MZ)、1-(2-Hydroxyethyl)imidazole和5-(Hydroxymethyl)imidazole 合成出一系列PEG600-imidazole衍生物,包括 PEG600-imidazole、PEG600-4-methylimidazole、PEG600-1-(2-hydroxyethyl)imidazole及PEG600-5-(hydroxymethyl)imidazole。經物化性質測試,其潛含性皆較未修飾Imidazole為佳。由實驗結果得知將聚乙二醇(PEG)與Imidazole及其衍生物合成的化合物可形成一良好的潛含性觸媒
Three Types of catalysts were usually applied in the molding compound of electronic industries which contain a series of imidazole, diazabicyclic derivatives (DBU and DBU) and phenolic compounds. Sometimes, the mixture compounds of diazabicyclic derivatives and phenolic compounds also were applied in the manufacture production. Due to the strong reactivity of these catalysts, the molding compounds must be storage at low temperature to prolong the pot-life. As a result, the latent catalysts have attracted much attention to maintain the long pot-life and improve the physical properties. A perfect latent catalyst for molding compound should have the following properties: (1) rapid cure at a moderately elevated temperature (100–175℃), (2) indefinite storage life for the catalyzed resin, and (3) no adverse effect on the properties of the cured material.
We has successfully developed with thermal latent catalysts imidazole including 1-Tosyl-imidazole 、1,1’-Oxalyldiimidazole、1-Trityl-imidazole 、N-Phenyl-imidazole-1-carboxamide、3- (Diphenylphosphinoyl)imidazole、tert-Butyl 1H-imidazole-1-carboxylate and 1-[ (Pivalyloxy)methyl]imidazol, this series of thermal latent catalyst imidazole showed the better thermal latency than market imidazole dervatives catalyst. Then we were also developed a series of organic Lewis acid-base hybrids thermal latent catalyst, use Polymerization of diglycidyl ether of bisphenol A (DGEBA) with organic Lewis acid-base hybrids, the organic Lewis acid-base hydris catalyst including 3-Phenylpropanoic acid、 H-Phe-OH 、H-His-OH 、 Boc-His-OH 、 Urocanic acid 、 3- (Imidazol-4-yl)propionic acid and Histamine。Continuity of research and development a series of conjugate acid-base pairs of heterocyclic molecules derivatives (amphiphatic piperazine, pyrazine, and pyridine derivaties), proved the physical properties of organic acid-base group modify heterlocyclic molecules pyrazine、pyridine、piperazine derivatives, can be used a good latent catalyst.
Furthermore, poly(ethylene glycol)s (PEGs) are very popular soluble supports due to they own the high hydrophilic alcohol group, the use of functional polyethylene glycols as soluble polymeric support sfor the synthesis of small orgnic molecules is currently receving a great dealof attention. Therefore, we use different molecular PEGs and a series imidazole derivatices sythese new type PEG-imidazole latent catalyst application applies to epoxy moldling compound we will investigation the physical properties of the mixture epoxy resin with peg-imdazole hybrids. In the experiment we will be divided into three parts. First part project using midazole with various molecular weights poly(ethylene glycol)s, including PEG-1000, 2000, and 5000 complex of the formation into the Imidazole / PEG complex,contains Imidazole / PEG1000 complex、Imidazole / PEG2000 complex and Imidazole / PEG5000 complex, were blended and evaluated as thermal latent catalysts for the polymerization of diglycidyl ether of bisphenol A (DGEBA) under liquid–solid two phase systems.
In the second section, we used different molecularPEGs (MW = 200, 400, 600, and 1000) with Imidazole synthesis EG200-imidazole、PEG400-imidazole、PEG600-imidazole and PEG1000-imidazole latent catalyst by viscosity measure the PEGs-Imidazole better latency catalyst than commercial latent catalysts 2E4MZ-CN and imidazole.
Finally, we treated PEG600 with imdazole derivative including imdazole, 4-Methylimidazole (4MZ), 1-(2-Hydroxyethyl)imidazole, and 5-(Hydroxymethyl)imidazole to prepare PEG600-imdazole derivatives, such as PEG600-imidazole, PEG600-4-methylimidazole, PEG600-1-(2-hydroxyethyl)imidazole, and PEG600-5-(hydroxymethyl)imidazole. The testing results of the physical and chemical properties, PEG600-imdazole derivatives showed the better potential latency than the unmodified imidazole.
1 Buchanan, R. C. In Ceramic materials for electronics; M. Dekker: New
York, 1986.
2 Harper, C. A. In Electronic packaging and interconnection handbook,
McGraw-Hill: New York, 1997.
3 Ginsberg, G. In Electronic equipment packaging technology; Van Nostrand
Reinhold: New York, 1992.
4 Goosey, M. T. In Plastics for electronics; Kluwer Academic Publishers:
Dordrecht, 1999.
5 Godovsky, Y. K. In Speciality polymers/polymer physics; Springer Verlag:
Berlin, 1989.
6 Wong, C. P. In Polymers for electronic and photonic applications, Academic
Press: Boston, 1993.
7 Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda, A. J. Appl.
Polym. Sci. 1998, 68, 1903.
8 Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29, 759.
9 Hale, A.; Macosko, C.W.; Bair, H. E. J Appl Polym Sci. 1989, 38, 1253.
10 Farkas, A.; Strohm, P.F. J Appl Polym Sci. 1968, 12, 159.
11 Wang, S.; Wong, C.P. International Symposium on Advanced Packagig
Materials. 1999, 67.
123
12 Galego, N.; González, F.; Vazquez, A. Polymer International. 1996, 40,
213.
13 Scola, D. A., Developments in Reinforced Plastics, Vol. 4, ed. G. Pritchard.
Elsevier Applied Science, London, 1984, pp 165.
14 Wang, S.; Wong, C.P. International Symposium on Advanced Packagig
Materials. 1999, 67.
15 Wong, F. F.; Chen, K.-L.; Lin, C.-M.; Yeh, M.-Y. J. Appl Polym Sci 2007,
104, 3292.
16 Wong, F. F.; Lin, C. M.; Chen, K.-L.; Huang, J.-J.; Shen, Y.-H.; Macromol.
Res. 2010, 18, 324–330.
17 Chen, K.-L.; Lin, H.-C.; Huang, C.-S.; Shen, Y.-H.; Huang, J.-J.; Wong, F.
F.; Lin, C. M.; Chen, K.-L.; Huang, J.-J. Polymer Journal 2009, 41,
685–690.
18 (a) M. Benaglia, M. Cinquini, F. Cozzi, Tetrahedron Lett. 1999, 40, 2019.;
(b) R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, Chem. Eur. J.
2000, 6, 133.; (c) J.W. Kim, J.-Ho. Kim, D.-H. Lee, Y.-S. Lee,
Tetrahedron Lett. 2006, 47, 4745.
19 Herz, H. G.; Kreuer, K. D.;Marier, J.;Scharfenberger, G.;Schuster, M.
F. H..;Meyer, W. H.. Electrochimica Acta. 2003, 48, 2165.
20 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
124
21 Park, S. J.; Kang, J. G.; Kwon, S. H. Maromol Mater Eng. 2004, 289, 413.
22 Lee, J. K.; Choi, Y. Marcromolecular Reserch. 2002, 10, 34.
23 Park, S. J.; Kim, T. J.; Lee, J. K. J Appl Polym Sci B: Polym Phys. 2000, 38,
2114.
24 Park, S.-J.; Kang, J.-G.; Kwon, S.-H. J. Polym. Sci., Part B: Polym. Phys.
2004, 42, 3841.
25 Silva, A. L.; Bordado, J. C. Catal. Rev. 2004, 46, 31.
26 Lin, R. H.; Chen, C.-L.; Kao, L.-H.; Yang, P.-R. J. Appl. Polym. Sci. 2001,
82, 3539.
27 Chiao, N. B., UK Patent Application, BG2, 075, 521 A, 18 Nov. 1981.
28 Galego, N., Vazquez, A., Riccardi, C. C. & Williams, R. J. J. J. Appl. Polym.
Sci. 1992, 45, 607
29 Abu-Abdoun, I. I.; Ali, A. Eur. Polym. J. 1993, 29, 1439.
30 Endo, T.; Kikkawa, A.; Uno, H.; Sato, H. J. Polym.Sci., Polym. Lett. Ed.
1989, 27, 73.
31 Crivello, J. V.; Lee, J. L. Macromolecules. 1981, 14, 1141.
32 Pappas, S. P.; Hill, L. H. J. Coat. Technol. 1981, 53, 43.
33 Pillai, V. N. R. ; Mutter, M. Acc. Chem. Res. 1981, 14, 122.
34 Ferreira, P.; Phillips, E.; Rippon, D.; Tsang, S. C. ; Hayes, W. J. Org. Chem.
2004, 69, 6851.
35 Sangermano, M.; Ortiz, R. A.; Urbina, B. A. P.; Duarte, L. B.; Valdez, A. E.
125
G.; Santos, R. G. Eur. Polym. J. 2008, 44, 1046.
36 Munir, I. Z.; Dordick, J. S. Enzyme and Microbial Technology 2000, 26,
337.
37 Olsen, C. A.; Witt, M.; Jaroszewski, J. W.; Franzyk, H. Organic Lett. 2004,
6, 1935.
38 Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Pitillo, M. J. Org.
Chem. 2001, 66, 3160.
39 Y. Fang, H. Kang, W. Wang, H. Liu, X. Gao, Energy Convers. Manage.
2010, 51, 2757.
40 R. B. Greenwal, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug Del.
Rev. 2003, 55 217.
41 For recent development of linkers connecting small organic molecules to
PEG see reference f and: (a) K. W. Jung, X. Zhao, K. D. Janda,
Tetrahedron Lett. 1996, 37, 6491.; (b) X. Zhao, K. W. Jung, K. D.Janda,
Tetrahedron Lett. 1997, 38, 977.; (c) X. Zhao, K. D. Janda, Tetrahedron
Lett. 1997, 38, 5437.; (d) K. W. Jung, X. Zhao, K. D. Janda, Tetrahedron.
1997, 53, 6645.
42 S. Luo, S. Zhang, Y. Wang, A. Xia, G. Zhang, X. Du, D. Xu, J. Org. Chem.
2010, 75, 1888.
43 (a) D. L. Elbert, Acta Biomaterialia, 2011, 7, 31.; (b) Y. Fang, H. Kang, W.
Wang, H. Liu, X. Gao, Energy Convers. Manage, 2010, 51, 2757.; (c) M.
126
E. Donaldson, L. C. Draucker, V. Blasucci, C. L. Liotta, C. A. Eckert,
Fluid Phase Equilib. 2009, 277, 81.
44 (a) Y. R. Ham, S. H. Kim, Y. J. Shin, D. H. Lee, M. Yang, J. Ind. Eng.
Chem., 2010, 16, 556.; (b) S. K. Ooi, W. D. CooK, G. P. Simon, C. H.
Such, Polymer, 2000, 41, 5639.; (c) M. S. Heise, G. C. Martin, J. Appl.
Polym. Sci. 1990, 39, 721.; (d) M. S. Heise, G. C. Martin, Macromolecule.,
1989, 22, 99.; (e) Y.-C. Chen, W.-Y. Chiu, K.-F. Lin, J. Appl. Polym. Sci.
Part A Polym. Chem. 1999, 37, 3233.; (f) F. Ricciardi, W. A. Romanchick,
M. M. Joullié, J. Appl. Polym. Sci. Polym. Chem. Edi. 1983, 21, 1475.; (g)
A. Farkas, P. F. Strohm, J. Appl. Polym. Sci. 1968, 12, 159.; (h) A. Hale, C.
W. Macosko, J. Appl. Polym. Sci. 1989, 38, 1253.
45 Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym.
Chem. 2001, 39, 187.
46 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
47 Tung. C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27, 569.
48 Núñez, L.; Núñez, M. R.;Villanueva, M.; Castro, A.; Rial, B. J. Appl.
Polym.Sci. 2002, 85, 366.
49 Galego, N.; Gonzàlez, F. Polymer International. 1996, 40, 213.
50 Park, S. J.; Kim, H. C.; Lee, H. I.; Suh, D. H. Macromolecules 2001, 34,
7573.
51 H. G. Herz, K. D. Kreuer, J. Marier, G. Scharfenberger, M. F. H. Schuster,
127
W. H. Meyer, Electrochimica Acta. 2003, 48, 2165.
52 (a) M. Benaglia, M. Cinquini, F. Cozzi, Tetrahedron Lett. 1999, 40, 2019.;
(b) R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, Chem. Eur. J.
2000, 6, 133.; (c) J.W. Kim, J.-Ho. Kim, D.-H. Lee, Y.-S. Lee,
Tetrahedron Lett. 2006, 47, 4745.
53 J. Berger, F. Lohse, J. Appl. Polym. Sci. 1985, 30, 531.
54 (a) P. Hodge, Chem. Soc. Rev. 1997, 26, 417.; (b) W. Li, B. Yan, J. Org.
Chem. 1998, 63, 4092.
校內:2021-01-01公開