| 研究生: |
魏立玄 Wei, Li-Hsuan |
|---|---|
| 論文名稱: |
高導熱環氧樹脂模封材料開發 Development of High Thermal Conductivity Epoxy Molding Compounds |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 環氧樹脂模封材料 、六方晶氮化硼(h-BN) 、二氧化矽(SiO2) 、氧化鋁(Al2O3) 、熱傳導值 |
| 外文關鍵詞: | epoxy molding compounds (EMC), hexagonal boron nitride (h-BN), silica (SiO2), alumina (Al2O3), thermal conductivity |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究使用六方晶氮化硼(h-BN)分別搭配二氧化矽(SiO2)或氧化鋁(Al2O3)做為複合無機填充材(filler),期能提升環氧樹脂模封材(Epoxy molding compounds, EMC)之熱傳導值外,並可降低生產成本。當使用h-BN為單一填充材時,其片徑或團聚體的粒徑越大時, EMC的熱傳導值也越高。而在SiO2/ h-BN EMC與Al2O3/BN EMC的研究中,發現h-BN添加量對熱傳導值的影響最為顯著,但SiO2/ h-BN (或Al2O3/BN) EMC的熱傳導值並非單純隨著h-BN添加量增加而增大,而是在特定比例下超過純h-BN EMC,SiO2/ h-BN EMC最高可達6.96 W/m*K,Al2O3/ h-BN EMC最高可達8.27 W/m*K;與純h-BN EMC相比,SiO2/ h-BN EMC最高超越10%,Al2O3/ h-BN EMC最高超越33%,其原因為純h-BN EMC中h-BN排列方向受熱壓方向影響幾乎都呈現水平方向排列,而透過與其他粉體混摻則可以改變h-BN的排列方向,此點可用SEM觀察EMC試片橫截面得到證明;而在不同粒徑分布SiO2及不同平均粒徑Al2O3的影響方面,發現雙分佈SiO2可以使粉體堆疊時更加緻密,密度相比使用單分佈SiO2時略微提高,除此之外孔隙度也降低,但平均粒徑較大的Al2O3則對密度及孔隙度無明顯影響(平均粒徑較大:20 μm,平均粒徑較小:10 μm),而在熱擴散係數方面,因雙分佈SiO2及平均粒徑較大的Al2O3中含有較大顆粒的粉體,因粒徑較h-BN大,可使更多h-BN貼附在表面上,比起與h-BN粒徑差不多的粉體能有效改變h-BN排列方向,使熱傳導途徑相比單粒徑分佈的SiO2及平均粒徑較小的Al2O3與h-BN搭配時更加有利熱傳導,使熱傳導值可以再進一步提升。
SUMMARY
Epoxy molding compounds (EMC) filled with hybrid fillers composed of hexagonal boron nitride (h-BN) and silica (SiO2) or alumina (Al2O3) were fabricated and their thermal conductivities were compared. The thermal conductivity of EMC slightly enhanced as h-BN particle size increasing. The ratio of h-BN to SiO2 (or Al2O3) contribute as enormous effect on the thermal conductivity of hybrid fillers EMC. The synergistic effect that the thermal conductivity of hybrid fillers EMC higher than single filled with h-BN EMC at specific ratio of h-BN to SiO2 (or Al2O3) was observed. The values of the maximum thermal conductivity were 6.96 and 8.27 W/m*K for SiO2/ h-BN EMC and Al2O3/BN EMC respectively which was found to be 10 and 33% respectively higher than single filled with h-BN EMC. The SEM results showed that the orientation of h-BN in the matrix was changed by SiO2 (or Al2O3) particles which affected the thermal conductivity of EMC since h-BN platelets have high aspect ratio and show a highly anisotropic thermal conductivity. The particle size distribution of SiO2 and the mean size of Al2O3 have the slight effect on the thermal conductivity of hybrid fillers EMC. Using SiO2 with bimodal particle size distribution resulted in the slightly increase of density and decrease of porosity of SiO2/ h-BN EMC. The thermal conductivity increased by adding larger SiO2 and Al2O3 particles into filler oriented h-BN platelets which formed an efficient thermally conductive pathways.
[1] TSIA;工研院IEK,「TSIA 2017年第四季/2017年台灣IC產業營運成果出爐」
(http://www.tsia.org.tw/Uploads/TSIA%202017Q4%E6%9A%A8%E5%85%A8%E5%B9%B4%20%E6%96%B0%E8%81%9E%E7%A8%BF(v).doc)
[2] 產業價值鏈資訊平台網(http://ic.tpex.org.tw/)
[3] Max Roser and Hannah Ritchie, "Technological Progress", 2018.
[4] 林光隆,「多元的半導體封裝材料. 科學發展專題報導」,第486期, 第30-33頁, 2013年6月.
[5] P. A. Hochstein, inventor; “LIGHTING FIXTURE,” U.S. Patent, 5857765, 1999.
[6] 「LED的散熱管理」,昕煒達科技有限公司(http://www.new-wonder.com.tw/?led%E7%9A%84%E6%95%A3%E7%86%B1%E7%AE%A1%E7%90%86,42)
[7] 林益生、許蓁容、何宗漢、伍玉真、鄧希哲,「環氧成型模料對構裝後晶片可靠度的影響」,工程科技與教育學刊第7卷第4期, 第532-545頁2010年10月.
[8] K. W. Garrett and H. M. Rosenberg, J Phys D Appl Phys, 1974, 7(9), 1247-58.
[9] H. Lee and K. Neville, “Handbook of Epoxy Resins,” McGraw Hill: New York, NY, USA. p. 14-24, 1982.
[10] 林益生、許蓁容、何宗漢、伍玉真、鄧希哲,「環氧成型模料對構裝後晶片可靠度的影響」, 工程科技與教育學刊第7卷第4期, 第532-545頁2010年10月.
[11] P. Judeinstein and C. Sanchez, J. Muter. Chem., 1996, 6(4), 511-525.
[12] A. Pakdel, Y. Bando, D. Shtansky and D. Golberg, Surface Innovations, 2013, 1, 32–39.
[13] E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B, 1976, 13, 4607.
[14] Z. Wang, T. Iizuka, M. Kozako, Y. Ohki and T. Tanaka, IEEE Trans Dielectr ElectrInsul, 2011, 18(6), 1963-72.
[15] C. Zhi, Y. Bando, C. Tan and D. Golberg, Solid State Commun, 2015, 135(1-2), 67-70.
[16] A. Lipp, K. A. Schwetz and K. Hunold, Journal of the European Ceramic Society, 1989, 5(1), 3-9.
[17] R. T. Paine and C. K. Narula, Chemical Reviews, 1990, 90(1), 73-91.
[18] S. J. Yoon and A. Jha, Journal of Materials Science, 1995, 30(3), 607- 614.
[19] F. L. Deepak, C.P. Vinod, K. Mukhopadhyay, A. Govindaraj and C. N. R. Rao, Chemical Physics Letters, 2002, 353(5-6), 345-352.
[20] 氮化物陶瓷—氮化硼陶瓷—六方氮化硼(h-BN)製備科學(http://wiki.metal.ckcest.cn/index.php?doc-view-101930.html)
[21] L. Laversenne, Š. Miljanić, P. Miele, C. Goutaudier and B. Bonnetot, Mater Sci Forum, 2007, 555, 355-62.
[22] X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg and Y. Bando, Nanoscale Res Lett, 7(1), 662-8, 2012.
[23] L. Wang, L. Shen, X. Xu, L. Xu and Y. Qian, RSC Adv, 2(28), 10689-93, 2012.
[24] 徐煜翔,「燃燒合成氮化硼之製程開發」,國立成功大學博士論文,(2015)
[25] S. L. Chung and Y. H. Hsu, Ceram Int, 2015, 41(1), 1457-65.
[26] C. C. Hwang and S. L. Chung, J Mater Res, 1998, 13(03), 680-6.
[27] S. L. Chung and J. S. Lin, Molecules, 2016, 21(5), 670-80.
[28] J. Gu, Q. Zhang, J. Dang and C. Xie, Polym Adv Technol, 2012, 23(6), 1025-8.
[29] Y. S. Xu and D. D. L, Compos Interface, 7(4), 243-56, 2000.
[30] J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang and X. Qu, RSC Adv., 2014, 4, 44282–44290.
[31] K. Kim and K. Kim, Ceram Int, 2014, 40(4), 5181-9.
[32] H. Wang, P. Chen, J. Sun, X. Kuang and Z. Yao, “Study on high thermal conductive BN/epoxy resin composites,” Appl. Mech. Mater, 2012, 105, 1751-4.
[33] Z. Zheng, M. Cox & B. Li, J Mater Sci (2018), 53, 66-99.
[34] Z. Lin, Y. Liu, S. Raghavan, K. Moon, S. K. Sitaraman, and C. P. Wong, ACS Appl. Mater. Interfaces, 2013, 5, 7633−7640.
[35] R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Science 2012; 335(6065):199-204.
[36] C. Yuan, B Duan, L Li, B Xie, M Huang, X Luo, ACS Appl. Mater. Interfaces, 2015 7(23):13000-6.
[37] HS Lim, JW Oh, SY Kim, MJ Yoo, SD Park, WS Lee, Chemistry of Materials, 2013; 25(16):3315-9.
[38] HB Cho, Y Tokoi, S Tanaka, H Suematsu, T Suzuki, W Jiang, K Niihara, T Nakayama, Composites Science and Technology, 2011; 71(8):1046-52.
[39] J. W. Bae, W. Kim and S. H. Cho, J Mater Sci, 2000, 35(23), 5907-13.
[40] Z. Li, D. Ju, L. Han, L. Dong, Thermochimica Acta, 652, 2017, 9-16.
[41] Y. K. Kim, J. Y. Chung, J. G. Lee, Y. K. Baek, P. W. Shin, Composites Part A: Applied Science and Manufacturing, 98, 2017, 184-191.
[42] A. Permal, M. Devarajan, H. L. Hung, T. Zahner, D. Lacey, and K. Ibrahim, J Mater Sci (2016) 51:7415–7426.
[43] L. Fang , C. Wu , R. Qian , L. Xie , K. Yang , P. Jiang, RSC Adv., 2014,4, 21010–21017.
[44] Z. Gao, L. Zhao, Materials and Design, 66 (2015), 176–182.
[45] K.Gaska , A. Rybak , C. Kapusta , R. Sekula , and A. Siwek , Polym. Adv. Technol., 2014, 26, 26–31.
校內:2023-06-29公開