簡易檢索 / 詳目顯示

研究生: 蘇佳洛
Su, Chia-Lo
論文名稱: 以模擬最佳化及反應曲面法求解醫學中心檢驗部醫療自動化系統之精實生產系統設計
The use of simulation optimization and Response Surface Method in solving the Lean system design of a medical-center laboratory automation system
指導教授: 楊大和
Yang, Taho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 醫學中心檢驗部精實系統模擬最佳化反應曲面法
外文關鍵詞: Lean System, Medical-Center Laboratory Automation System, Response Surface Method, Simulation Optimization
相關次數: 點閱:123下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫療服務為服務業的一環,其具備不可分割性(inseparability),服務的生產和顧客消費過程為同時進行;無形性(intangibility),醫療服務沒有特定的形體;異質性(heterogeneity),不同病患其所需服務時間變異性很大;以及不可儲存性(Perishable),不同於一般的製造業,服務業無法預先生產存貨以備將來之用。
    在醫院內檢驗部的任務是為各種來源的病患提供病患檢體檢驗以供醫師病情判斷之用,若檢驗週轉時間(Turnaround time,TAT)太長會耽誤病患的等待時間以及醫師對病患病情的判斷,因此如何縮短檢驗週轉時間達到服務水準最大化為本研究關切的議題。
    本研究以精實(Lean)觀點,針對醫學中心檢驗部醫療自動化系統的特性,以價值流圖(Value Stream Map,VSM)的手法辨識檢驗流程浪費所在,以此為契機就離心機以及生化分析儀(DxC)作改善,並提出一CONWIP(Constant Work-in-process)生產策略,控制系統內流動的在製品(Work-in-process)。透過此精實系統設計達到服務水準最大化,並觀察檢驗週轉時間及產出的變化。
    最後並以某醫學中心為實際案例,說明導入精實系統之過程,利用模擬最佳化(Simulation optimization)及反應曲面法(Response Surface Method)求解出最佳的控制因子組合,本研究針對兩種情境作探討,其一為聚焦在檢體種類較少,檢體所需加工時間變異較小之情境,此時改變離心機等待集批時間得以改善3.65%的服務水準;除此之外並加入CONWIP生產策略得以縮短2.94%的檢驗週轉時間。另一為考量大部份之檢體,檢體所需加工時間變異較大,改變生化分析儀派工得以改善187.40%的服務水準,而在改善生化分析儀為前提之下再改變離心機等待集批時間與使用CONWIP生產策略得以縮短58.10%的檢驗週轉時間,提升了265.00%的服務水準,在整體績效上獲得顯著改善。並比較模擬最佳化以及反應曲面法的求解品質發現在考慮效率的因素下使用反應曲面法得以求出不錯的解,但模擬最佳化求出之解仍較反應曲面法來的佳。最後並說明利用精實的觀念控制系統內的生產管理,在醫學中心之檢驗部中,可有效的消除系統中的浪費,增加病患的價值。

    Health care has several features which are scarcely found in other service industries, such as “Inseparability”, health care services and customer consumption are proceeded at the same time. “Intangibility”, there are no specific form in healthcare service. “Heterogeneity”, the diagnostic time may different due to different personal treatment. “Perishable”, health care service is not like manufacturing could be made in advance and kept in stock for the use of future.
    When a patient makes a demand; a hospital is responsible for providing immediate medical care. The mission that laboratory must achieve is to bring patients’ results to physicians to diagnose a patient’s condition. However turnaround time (TAT) is often too long and leave patients waiting. Therefore, reducing TAT in order to improve service level is a vital issue.
    This thesis focuses on the characteristics of the laboratory automation system. This thesis explores “Womack’s lean thinking and Rother’s 7 guiding principles procedures” and applies them to the lean system to identify the waste through the current value stream mapping. According to the lean system design, we could maximize service level and observe the condition of TAT and throughput by improving the batch waiting time of centrifuge and dispatching rule for DxC, implementing CONWIP strategy to the system for the purpose of controlling the work-in-process level in the system.
    Additionally, a real world medical center laboratory automation system case study is used to illustrate how to implement lean processes. The use of simulation optimization and response surface method offer the optimal combination of control factors. In terms of experimental results, we find that in the scenario where the type of specimens and the variability of the DxC’s cycle time are less, changing centrifuge‘s characteristics could improve service level from 54.00% to 55.97%, by 3.65%; if we change the centrifuge‘s characteristics and use the CONWIP strategy we could obtain significant improvement in overall performance, reducing TAT from 68.73 minutes to 66.71 minutes, an improvement of 2.94%. Under the scenario which the variability of the DxC’s cycle time is greater and type of specimen is more, changing DxC’s dispatching rule will bring approximately 187.40% improvement, service level improves from 20.00% to 46.99%. Moreover, changing DxC’s dispatching rule, adjusting centrifuge’s characteristics and using CONWIP strategy would be significant, reducing TAT from 132.74 minutes to 55.62 minutes, an improvement of 58.10%, and make service level from 20.00% to 265.00%, an improvement of 265.00%.
    In addition, comparing simulation optimization to RSM, RSM’s solution speed is more effective than simulation optimization. But solution quality of simulation optimization is more important, then which method a hospital determines to use depend on the goal of decision maker. It is a tradeoff.
    Finally, implementing the lean concept to the medical-center laboratory automation system can make better production management, add value to patients and eliminate waste in the system effectively.

    摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 1. 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究流程 4 1.4 論文架構 4 2. 文獻探討 5 2.1 精實生產系統 5 2.2 精實醫療 14 2.3 模擬最佳化 19 2.4 反應曲面法 24 3. 研究方法 28 3.1 繪製價值流圖 28 3.2 導入精實拉式生產策略 31 3.3 模擬模式建構 34 3.4 模擬最佳化 39 3.5 反應曲面法 41 4. 實例說明 45 4.1 案例醫學中心簡介 45 4.2 現況分析與導入精實拉式策略 49 4.3 模擬模式建構 57 4.4 模擬最佳化求解 72 4.5 反應曲面法求解 73 4.6 實驗結果與分析 101 5. 結論與建議 109 5.1 結論 109 5.2 未來研究與建議 110 參考文獻 111 附錄A 實驗參數設定 114 附錄B模擬最佳化之參數設定 116 附錄C各情境模擬最佳化之搜尋過程及最佳控制因子組合 117 附錄D 價值溪流符號說明 119 附錄E 反應曲面法等高線圖及反應曲面圖 121

    張曉卉,民96,創造醫療價值,從「以病人為中心」做起,康健雜誌,105。
    楊大和、謝瓊嬉,民97a,電子業向汽車業取經--精實生產在TFT-LCD產業成功的應用,品質月刊,44卷(9期),頁8-15。
    楊大和、謝瓊嬉,民97b,綜觀『精實系統』的原理、工具及組織,品質月刊,44卷(11期),頁49-55。
    行政院衛生署,民98a,歷年醫院平均每日醫療服務量統計, http://www.doh.gov.tw/CHT2006/DisplayStatisticFile.aspx?d=76390 (1/11,民100取得)
    行政院衛生署,民98b,醫療機構現況及醫院醫療服務量統計分析,http://www.doh.gov.tw/CHT2006/DisplayStatisticFile.aspx?d=76377&s=1 (1/7,民100取得)
    Amirahmadi, F., Dalbello, A., Gronseth, D., and Mccarthy, J., 2007, Innovation in the clinical laboratory - an overview of lean priciples in the laboratory, Mayo Foundation for Medical Education and Research.
    Banks, J., Carson, J.S., Nelson, B.L., and Nicol, D.M., 2000, Discrete-event system simulation, New Jersey, Prentice Hall.
    Box, G.E.P. and Wilson, K.B., 1951, On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society. Series B (Methodological), 13 (1), 1-45.
    Cunningham, J.E., Fiume, O.J., and Adams, E., 2003, Real numbers : Management accounting in a lean organization, Durham, NC, Managing Times Press.
    Glenday, I., 2005. Breaking through to flow: Banish firefighting and produce to customer demand, Ross-on-Wye, UK, Lean Enterprise Academy.
    Glover, F., Kelly, J.P., and Laguna, M., 1996, New advances and applications of combining simulation and optimization, Proceedings of the 28th conference on Winter simulation, Coronado, California, United States: IEEE Computer Society, 144-152.
    Glover, F. and Laguna, M., 1997, Tabu search, Boston, Kluwer Academic Publishers.
    Glover, F., Lagunai, M., and Marti, R., 2000, Fundamentals of scatter search and path relinking, Control and Cybernetics, 29 (3), 653-684.
    Graban, M., 2009, Lean hospitals : Improving quality, patient safety, and employee satisfaction, Boca Raton, CRC Press.
    Hawkins, R.C., 2007, Laboratory turnaround time, Clin Biochem Rev, 28 (4), 179-94.
    Hopp, W. and Spearman, M.L., 2008, Factory physics, 3rd Revised edition ed, United States, McGraw-Hill Education - Europe.
    Jennifer, B. and Marijane, W., 2010, Power of lean in the laboratory: A clinical application, GE Healthcare.
    Kelton, W.D., Sadowski, R.P., and Sturrock, D.T., 2009, Simulation with arena, McGraw Hill Higher Education.
    Kohn, L.T., Corrigan, J.M., and Donaldson, M.S., 2000, To err is human, Committee on Quality of Health Care in America and Institute of Medicine.
    Liker, J.K., 2004, The toyota way: 14 management principles from the world's greatest manufacturer, New York, McGraw Hill.
    Montgomery, D.C., 2004, Design and analysis of experiments, New York, John Wiley & Sons.
    Noguera, J.H. and Watson, E.F., 2006, Response surface analysis of a multi-product batch processing facility using a simulation metamodel, International Journal of Production Economics, 102 (2), 333-343.
    Porter, M.E., 1998, Competitive advantage : Creating and sustaining superior performance : With a new introduction,, 1st Free Press ed., New York, Free Press.
    Rajgopal, J. and Abdulmalek, F.A., 2007, Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A process sector case study, International Journal of Production Economics, 107 (1), 223-236.
    Rother, M. and Shook, J., 2003, Learning to see: Value-stream mapping to create value and eliminate muda: Version 1.3, The Lean Enterprise Institute, Brookline.
    Safizadeh, M.H. and Billy, M.T., 1984, Optimization in simulation experiments using response surface methodology, Computers & Industrial Engineering, 8 (1), 11-27.
    Smalley, A., 2003. Creating level pull : A lean production-system improvement guide for production-control, operations, and engineering professionals, Cambridge, MA, Lean Enterprises Institute.
    The Joint Commision, 2011, Critical access hospitals: 2011 National Patient Safety goals, The Joint Commision.
    Vaughan, T.S., 2007, Cyclical schedules vs. Dynamic sequencing: Replenishment dynamics and inventory efficiency, International Journal of Production Economics, 107 (2), 518-527.
    Womack, J.P., Byrne, A.P., Fiume, O.J., Kaplan, G.S., and Toussaint, J., 2005, Going lean in health care, Institute for Healthcare Improvement.
    Womack, J.P. and Jones, D.T., 2003, Lean thinking: Banish waste and create wealth in your corporation, Simon & Schuster.
    Womack, J.P. and Jones, D.T., 2005, Lean solutions : How companies and customers can create value and wealth together, New York, NY, Free Press.
    Yang, T., Fu, H.-P., and Yang, K.Y., 2007, An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy-a case study, International Journal of Production Economics, 107 (1), 104-114.
    Yang, T. and Tseng, L., 2002, Solving a multi-objective simulation model using a hybrid response surface method and lexicographical goal programming approach-a case study on integrated circuit ink-marking machines, The Journal of the Operational Research Society, 53 (2), 211-221.
    Yang, T., Hsieh, C.H., and Cheng, B.Y., 2011, Lean-pull strategy in a re-entrant manufacturing environment: A pilot study for TFT-LCD array manufacturing, International Journal of Production Research, 49 (6), 1511-1529.
    Yang, T., Kuo, Y.Y., and Chou, P.H., 2005, Solving a multiresponse simulation problem using a dual-response system and scatter search method, Simulation Modelling Practice and Theory, 13 (4), 356-369.
    Yang, T., Lin, H.C., and Chen, M.L., 2006, Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: A case study, Robotics and Computer-Integrated Manufacturing, 22 (4), 322-331.
    Yu, B. and Popplewell, K., 1994, Metamodels in manufacturing - a review, International Journal of Production Research, 32 (4), 787-796.

    下載圖示 校內:2013-07-26公開
    校外:2013-07-26公開
    QR CODE