| 研究生: |
謝秉宏 Hsieh, Ping-Hung |
|---|---|
| 論文名稱: |
基於KxWyOz/MoS2核殼結構之鎢絲電極 Tungsten Filament Electrode based on KxWyOz/MoS2 Core-Shell Structure |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 鎢絲 、電極 、超級電容 、鉀鎢氧化物 、二硫化鉬 |
| 外文關鍵詞: | tungsten filament, electrode, supercapacitor, KxWyOz, MoS2 |
| 相關次數: | 點閱:40 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用低成本之鎢絲作為金屬集電器,使用浸塗工藝隨後將鎢絲熱處理氧化以在鎢絲上生長垂直排列之鉀鎢氧化物KxWyOz奈米柱陣列,在不使用任何高分子黏著劑的情況下,將活性材料直接集成在金屬絲狀電極上,以增強活性材料之機械強度,減少活性材料/金屬集電器界面處之電容損失,並探討改變浸塗使用之溶液濃度和熱處理條件,對形成KxWyOz奈米柱陣列之影響,然後,使用於鎢絲電極上生長之KxWyOz奈米柱陣列作為基板,透過微波水熱法進一步生長二硫化鉬MoS2以形成KxWyOz/MoS2核殼結構複合材料,並研究水熱溫度、水熱時間、MoS2前驅液濃度、前驅液PH值和硫脲濃度對於MoS2奈米花生長產生之影響,以及對MoS2之2H和1T相變化進行XPS分析,說明具有較多金屬1T相MoS2比例能夠有效提升導電度,進而提升超級電容器性能,最後對於鎢絲上合成之KxWyOz和KxWyOz/MoS2活性材料進行循環伏安測試、恆電流充放電分析及EIS交流阻抗分析來探討其電化學性能。
Recently, as the demand for 3C products that are portable, wearable, lightweight, and environmentally friendly has increased, among these various energy storage devices, filament-shaped supercapacitors (FSCs) are one of the most promising wearable power supplies. In this study, tungsten filament (W) was used as a cost-effective and flexible current collector. A dip-coating process followed by thermal oxidation was used to deposit vertically aligned potassium tungsten oxide (KxWyOz) nanorod arrays (NRAs) on the tungsten filament. KxWyOz NRAs served as support material, molybdenum disulfide (MoS2) was further grown on the KxWyOz using a microwave-hydrothermal method to form KxWyOz/MoS2 core-shell structure. Finally, the obtained W/KxWyOz/MoS2 nanocomposites were evaluated for use as an electrode in supercapacitor. The relationship between the material characteristics and the supercapacitor performance was addressed.
[1] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1189-1206, 2016, doi: 10.1016/j.rser.2015.12.249.
[2] J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, "Supercapacitors: Properties and applications," Journal of Energy Storage, vol. 17, pp. 224-227, 2018, doi: 10.1016/j.est.2018.03.012.
[3] Poonam, K. Sharma, A. Arora, and S. K. Tripathi, "Review of supercapacitors: Materials and devices," Journal of Energy Storage, vol. 21, pp. 801-825, 2019, doi: 10.1016/j.est.2019.01.010.
[4] A. Bello et al., "High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide," AIP Advances, vol. 3, no. 8, 2013, doi: 10.1063/1.4819270.
[5] J. R. Miller, "Perspective on electrochemical capacitor energy storage," Applied Surface Science, vol. 460, pp. 3-7, 2018, doi: 10.1016/j.apsusc.2017.10.018.
[6] C.-H. Wu, J.-S. Ma, and C.-H. Lu, "Synthesis and characterization of nickel–manganese oxide via the hydrothermal route for electrochemical capacitors," Current Applied Physics, vol. 12, no. 4, pp. 1190-1194, 2012, doi: 10.1016/j.cap.2012.02.056.
[7] C. Kang et al., "High loading carbon nanotubes deposited onto porous nickel yarns by solution imbibition as flexible wire-shaped supercapacitor electrodes," Journal of Energy Chemistry, vol. 27, no. 3, pp. 836-842, 2018, doi: 10.1016/j.jechem.2017.05.009.
[8] G. Nagaraju, S. C. Sekhar, and J. S. Yu, "Utilizing Waste Cable Wires for High-Performance Fiber-Based Hybrid Supercapacitors: An Effective Approach to Electronic-Waste Management," Advanced Energy Materials, vol. 8, no. 7, 2018, doi: 10.1002/aenm.201702201.
[9] G. Li, R. Li, and W. Zhou, "A Wire-Shaped Supercapacitor in Micrometer Size Based on Fe3O4 Nanosheet Arrays on Fe Wire," Nanomicro Lett, vol. 9, no. 4, p. 46, 2017, doi: 10.1007/s40820-017-0147-3.
[10] P. Li, Y. Li, Z. Zhang, J. Chen, Y. Li, and Y. Ma, "Capillarity-driven assembly of single-walled carbon nanotubes onto nickel wires for flexible wire-shaped supercapacitors," Materials Science for Energy Technologies, vol. 1, no. 2, pp. 91-96, 2018, doi: 10.1016/j.mset.2018.06.001.
[11] S. Jiang, S. Cheng, Y. Huang, T. Shi, and Z. Tang, "High performance wire-shaped supercapacitive electrodes based on activated carbon fibers core/manganese dioxide shell structures," Ceramics International, vol. 43, no. 10, pp. 7916-7921, 2017, doi: 10.1016/j.ceramint.2017.03.118.
[12] D. P. Dubal, Y. P. Wu, and R. Holze, "Supercapacitors: from the Leyden jar to electric busses," ChemTexts, vol. 2, no. 3, 2016, doi: 10.1007/s40828-016-0032-6.
[13] P. Kurzweil, "Electrochemical Capacitors," pp. 596-606, 2009.
[14] J. Ho, T. R. Jow, and S. Boggs, "Historical introduction to capacitor technology," IEEE Electrical Insulation Magazine, vol. 26, no. 1, pp. 20-25, 2010, doi: 10.1109/MEI.2010.5383924.
[15] P. Kurzweil, "Electrochemical Double-layer Capacitors," in Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 2015, pp. 345-407.
[16] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chem Soc Rev, vol. 38, no. 9, pp. 2520-31, Sep 2009, doi: 10.1039/b813846j.
[17] J. Huang, B. G. Sumpter, and V. Meunier, "A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes," Chemistry, vol. 14, no. 22, pp. 6614-26, 2008, doi: 10.1002/chem.200800639.
[18] J. Huang, B. G. Sumpter, and V. Meunier, "Theoretical Model for Nanoporous Carbon Supercapacitors," Angewandte Chemie, vol. 120, no. 3, pp. 530-534, 2008, doi: 10.1002/ange.200703864.
[19] S. E. Chun et al., "Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge," Nat Commun, vol. 6, p. 7818, Aug 4 2015, doi: 10.1038/ncomms8818.
[20] R. Thangappan, M. Arivanandhan, R. Dhinesh Kumar, and R. Jayavel, "Facile synthesis of RuO 2 nanoparticles anchored on graphene nanosheets for high performance composite electrode for supercapacitor applications," Journal of Physics and Chemistry of Solids, vol. 121, pp. 339-349, 2018, doi: 10.1016/j.jpcs.2018.05.049.
[21] J. Hu, F. Qian, G. Song, W. Li, and L. Wang, "Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors," Nanoscale Res Lett, vol. 11, no. 1, p. 469, Dec 2016, doi: 10.1186/s11671-016-1693-1.
[22] J. Zhao, Y. Tian, A. Liu, L. Song, and Z. Zhao, "The NiO electrode materials in electrochemical capacitor: A review," Materials Science in Semiconductor Processing, vol. 96, pp. 78-90, 2019, doi: 10.1016/j.mssp.2019.02.024.
[23] F. Yang, K. Xu, and J. Hu, "Construction of Co3O4@Fe2O3 core-shell nanowire arrays electrode for supercapacitors," Journal of Alloys and Compounds, vol. 729, pp. 1172-1176, 2017, doi: 10.1016/j.jallcom.2017.09.259.
[24] X. F. Lu, X. Y. Chen, W. Zhou, Y. X. Tong, and G. R. Li, "alpha-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors," ACS Appl Mater Interfaces, vol. 7, no. 27, pp. 14843-50, Jul 15 2015, doi: 10.1021/acsami.5b03126.
[25] H. Liu, W. Zhu, D. Long, J. Zhu, and G. Pezzotti, "Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors," Applied Surface Science, vol. 478, pp. 383-392, 2019, doi: 10.1016/j.apsusc.2019.01.273.
[26] R. Li et al., "Design and synthesis of tungsten trioxide/polypyrrole/graphene using attapulgite as template for high-performance supercapacitors," Electrochimica Acta, vol. 311, pp. 123-131, 2019, doi: 10.1016/j.electacta.2019.04.159.
[27] A. K. Thakur and R. B. Choudhary, "High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2)," Synthetic Metals, vol. 220, pp. 25-33, 2016, doi: 10.1016/j.synthmet.2016.05.023.
[28] X. Zhang, L. Ma, M. Gan, G. Fu, M. Jin, and Y. Zhai, "Controllable constructing of hollow MoS2/PANI core/shell microsphere for energy storage," Applied Surface Science, vol. 460, pp. 48-57, 2018, doi: 10.1016/j.apsusc.2017.10.010.
[29] M. Majumder, R. B. Choudhary, S. P. Koiry, A. K. Thakur, and U. Kumar, "Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS 2 hybrid electrode material for supercapacitor applications," Electrochimica Acta, vol. 248, pp. 98-111, 2017, doi: 10.1016/j.electacta.2017.07.107.
[30] P. Lu, D. Xue, H. Yang, and Y. Liu, "Supercapacitor and nanoscale research towards electrochemical energy storage," International Journal of Smart and Nano Materials, vol. 4, no. 1, pp. 2-26, 2013, doi: 10.1080/19475411.2011.652218.
[31] J. P. Zheng and T. R. Jow*, "A New Charge Storage Mechanism for Electrochemical Capacitors " Journal of the Electrochemical Society, vol. 142, no. 1, pp. L6-L8, 1995.
[32] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, pp. 845–854, 2008.
[33] H. Jiang, T. Zhao, J. Ma, C. Yan, and C. Li, "Ultrafine manganese dioxide nanowire network for high-performance supercapacitors," Chem Commun (Camb), vol. 47, no. 4, pp. 1264-6, Jan 28 2011, doi: 10.1039/c0cc04134c.
[34] X. Tang, H. Li, Z.-H. Liu, Z. Yang, and Z. Wang, "Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure," Journal of Power Sources, vol. 196, no. 2, pp. 855-859, 2011, doi: 10.1016/j.jpowsour.2010.06.067.
[35] S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, and X. Wang, "Shape-Controlled Synthesis of One-Dimensional MnO2via a Facile Quick-Precipitation Procedure and its Electrochemical Properties," Crystal Growth & Design, vol. 9, no. 10, pp. 4356-4361, 2009, doi: 10.1021/cg900223f.
[36] W. Xiao, H. Xia, J. Y. H. Fuh, and L. Lu, "Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties," Journal of Power Sources, vol. 193, no. 2, pp. 935-938, 2009, doi: 10.1016/j.jpowsour.2009.03.073.
[37] S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.-K. Liu, and S.-X. Dou, "Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors," Electrochemistry Communications, vol. 10, no. 11, pp. 1724-1727, 2008, doi: 10.1016/j.elecom.2008.08.051.
[38] L. Ren et al., "Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor," ACS Appl Mater Interfaces, vol. 7, no. 51, pp. 28294-302, Dec 30 2015, doi: 10.1021/acsami.5b08474.
[39] V. Augustyn, P. Simon, and B. Dunn, "Pseudocapacitive oxide materials for high-rate electrochemical energy storage," Energy & Environmental Science, vol. 7, no. 5, 2014, doi: 10.1039/c3ee44164d.
[40] G. Cheng et al., "Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors," Journal of Materials Chemistry A, vol. 3, no. 33, pp. 17469-17478, 2015, doi: 10.1039/c5ta05313g.
[41] J. Lin et al., "Designed formation of NiO@C@Cu2O hybrid arrays as battery-like electrode with enhanced electrochemical performances," Ceramics International, vol. 43, no. 17, pp. 15410-15417, 2017, doi: 10.1016/j.ceramint.2017.08.082.
[42] J. Liu et al., "Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials," Adv Mater, vol. 23, no. 18, pp. 2076-81, May 10 2011, doi: 10.1002/adma.201100058.
[43] Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang, and H. Fan, "Synthesis of ZnO tetrapods for high-performance supercapacitor applications," Materials Letters, vol. 198, pp. 192-195, 2017, doi: 10.1016/j.matlet.2017.04.032.
[44] R. Mohammadi and S. Shahrokhian, "In-situ fabrication of nanosheet arrays on copper foil as a new substrate for binder-free high-performance electrochemical supercapacitors," Journal of Electroanalytical Chemistry, vol. 802, pp. 48-56, 2017, doi: 10.1016/j.jelechem.2017.08.048.
[45] N. Choudhary, C. Li, H. S. Chung, J. Moore, J. Thomas, and Y. Jung, "High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers," ACS Nano, vol. 10, no. 12, pp. 10726-10735, Dec 27 2016, doi: 10.1021/acsnano.6b06111.
[46] W. Nie et al., "A wearable fiber-shaped supercapacitor based on a poly(lactic acid) filament and high loading polypyrrole," RSC Advances, vol. 9, no. 33, pp. 19180-19188, 2019, doi: 10.1039/c9ra02171j.
[47] X. Pu et al., "Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators," Adv Mater, vol. 28, no. 1, pp. 98-105, Jan 6 2016, doi: 10.1002/adma.201504403.
[48] L. Dong et al., "Flexible electrodes and supercapacitors for wearable energy storage: a review by category," Journal of Materials Chemistry A, vol. 4, no. 13, pp. 4659-4685, 2016, doi: 10.1039/c5ta10582j.
[49] T.-H. Duong and H.-C. Kim, "Electrochemical etching technique for tungsten electrodes with controllable profiles for micro-electrical discharge machining," International Journal of Precision Engineering and Manufacturing, vol. 16, no. 6, pp. 1053-1060, 2015, doi: 10.1007/s12541-015-0136-8.
[50] A.-S. Lucier, "Preparation and Characterization of Tungsten Tips Suitable for Molecular Electronics Studies," Center for the Physics of Materials Department of Physics, McGill University 2004.
[51] A. Winchester et al., "Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide," ACS Appl Mater Interfaces, vol. 6, no. 3, pp. 2125-30, Feb 12 2014, doi: 10.1021/am4051316.
[52] Y. Yang, H. Fei, G. Ruan, C. Xiang, and J. M. Tour, "Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices," Adv Mater, vol. 26, no. 48, pp. 8163-8, Dec 23 2014, doi: 10.1002/adma.201402847.
[53] N. Choudhary et al., "Directly deposited MoS2 thin film electrodes for high performance supercapacitors," Journal of Materials Chemistry A, vol. 3, no. 47, pp. 24049-24054, 2015, doi: 10.1039/c5ta08095a.
[54] A. Khalil et al., "Metallic 1T-WS2 nanoribbons as highly conductive electrodes for supercapacitors," RSC Advances, vol. 6, no. 54, pp. 48788-48791, 2016, doi: 10.1039/c6ra08975e.
[55] M. A. Bissett, I. A. Kinloch, and R. A. Dryfe, "Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors," ACS Appl Mater Interfaces, vol. 7, no. 31, pp. 17388-98, Aug 12 2015, doi: 10.1021/acsami.5b04672.
[56] F. Wang et al., "Construction of 3D V2O5/hydrogenated-WO3 nanotrees on tungsten foil for high-performance pseudocapacitors," Phys Chem Chem Phys, vol. 16, no. 24, pp. 12214-20, Jun 28 2014, doi: 10.1039/c4cp01200c.
[57] G. F. Samu, K. Pencz, C. Janáky, and K. Rajeshwar, "On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures," Journal of Solid State Electrochemistry, vol. 19, no. 9, pp. 2741-2751, 2015, doi: 10.1007/s10008-015-2820-0.
[58] J. C. Harmand, G. Patriarche, N. Péré-Laperne, M. N. Mérat-Combes, L. Travers, and F. Glas, "Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth," Applied Physics Letters, vol. 87, no. 20, 2005, doi: 10.1063/1.2128487.
[59] M. Roozbehi, P. Sangpour, A. Khademi, and A. Z. Moshfegh, "The effect of substrate surface roughness on ZnO nanostructures growth," Applied Surface Science, vol. 257, no. 8, pp. 3291-3297, 2011, doi: 10.1016/j.apsusc.2010.11.005.
[60] E. F. Kukovitsky, S. G. L’vov, and N. A. Sainov, "VLS-growth of carbon nanotubes from the vapor," Chemical Physics Letters, pp. 65–70, 2000.
[61] H. Qi, C. Wang, and J. Liu*, "A Simple Method for the Synthesis of Highly Oriented Potassium-Doped Tungsten Oxide Nanowires," Adv. Mater., vol. 15, no. 5, pp. 411-414, March 4 2003.
[62] B. Zhang, C. Cao, H. Qiu, Y. Xu, Y. Wang, and H. Zhu, "Facile Synthesis of Uniform Tungsten Oxide Nanorods in Large Scale," Chemistry Letters, vol. 34, no. 2, pp. 154-155, 2005, doi: 10.1246/cl.2005.154.
[63] F. Ghasempour, R. Azimirad, A. Amini, and O. Akhavan, "Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil," Applied Surface Science, vol. 338, pp. 55-60, 2015, doi: 10.1016/j.apsusc.2015.01.217.
[64] S. Park, H.-W. Shim, C. W. Lee, H. J. Song, J.-C. Kim, and D.-W. Kim, "High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes," Nano Research, vol. 9, no. 3, pp. 633-643, 2015, doi: 10.1007/s12274-015-0943-3.
[65] V. Lokhande, A. Lokhande, G. Namkoong, J. H. Kim, and T. Ji, "Charge storage in WO3 polymorphs and their application as supercapacitor electrode material," Results in Physics, vol. 12, pp. 2012-2020, 2019, doi: 10.1016/j.rinp.2019.02.012.
[66] J. Qin, G. Zhang, J. Liang, H. Xia, Y. Xing, and W. Sun, "Completely Different Performances of the Dye-Sensitized Solar Cells Based on Potassium-Tungsten-Oxide and -Bronze Nanobranches," Science of Advanced Materials, vol. 6, no. 1, pp. 141-150, 2014, doi: 10.1166/sam.2014.1693.
[67] G. Ma et al., "High-performance aqueous asymmetric supercapacitor based on K0.3WO3 nanorods and nitrogen-doped porous carbon," Journal of Power Sources, vol. 330, pp. 219-230, 2016, doi: 10.1016/j.jpowsour.2016.09.022.
[68] J. VONDRAK and J. BAI.EIJ, "ELECTROCHEMICAL PROPERTIES OF TUNGSTEN BRONZES-II. HYDROGEN EVOLUTION ON SODIUM TUNGSTEN BRONZES," Electrochimica Acta, vol. 20, pp. 283-287, 1975.
[69] Y. Zhang et al., "Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells," Dalton Trans, vol. 44, no. 6, pp. 2771-9, Feb 14 2015, doi: 10.1039/c4dt02927e.
[70] Z. Gu, Y. Ma, T. Zhai, B. Gao, W. Yang, and J. Yao, "A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires," Chemistry, vol. 12, no. 29, pp. 7717-23, Oct 10 2006, doi: 10.1002/chem.200600077.
[71] M. Zhang, Z. Lian, Y. Wang, and S. Pan, "Nonlinear optical and self-activated luminescent properties of A2W3O10 (A = Rb and Cs)," RSC Advances, vol. 6, no. 45, pp. 39234-39239, 2016, doi: 10.1039/c6ra03407a.
[72] N. Joseph, P. Muhammed Shafi, and A. Chandra Bose, "Metallic 1T-MoS2 with defect induced additional active edges for high performance supercapacitor application," New Journal of Chemistry, vol. 42, no. 14, pp. 12082-12090, 2018, doi: 10.1039/c8nj02087f.
[73] F. N. I. Sari and J. M. Ting, "Direct Growth of MoS2 Nanowalls on Carbon Nanofibers for Use in Supercapacitor," Sci Rep, vol. 7, no. 1, p. 5999, Jul 20 2017, doi: 10.1038/s41598-017-05805-z.
[74] M. Mortazavi, C. Wang, J. Deng, V. B. Shenoy, and N. V. Medhekar, "Ab initio characterization of layered MoS2 as anode for sodium-ion batteries," Journal of Power Sources, vol. 268, pp. 279-286, 2014, doi: 10.1016/j.jpowsour.2014.06.049.
[75] X. Chia, A. Y. Eng, A. Ambrosi, S. M. Tan, and M. Pumera, "Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides," Chem Rev, vol. 115, no. 21, pp. 11941-66, Nov 11 2015, doi: 10.1021/acs.chemrev.5b00287.
[76] D. Sun et al., "1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2," Nano Energy, vol. 61, pp. 361-369, 2019, doi: 10.1016/j.nanoen.2019.04.063.
[77] J. M. Soon and K. P. Loh, "Electrochemical Double-Layer Capacitance of MoS2 Nanowall Films," Electrochemical and Solid-State Letters, pp. A250-A254, 2007, doi: 10.1149/1.2778851兴.
[78] N. Thi Xuyen and J. M. Ting, "Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors," Chemistry, vol. 23, no. 68, pp. 17348-17355, Dec 6 2017, doi: 10.1002/chem.201703690.
[79] C. Zhao, J. M. Ang, Z. Liu, and X. Lu, "Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors," Chemical Engineering Journal, vol. 330, pp. 462-469, 2017, doi: 10.1016/j.cej.2017.07.129.
[80] H. Yang, S. Xu, L. Jiang, and Y. Dan, "Thermal Decomposition Behavior of Poly (Vinyl Alcohol) with Different Hydroxyl Content," Journal of Macromolecular Science, Part B, vol. 51, no. 3, pp. 464-480, 2011, doi: 10.1080/00222348.2011.597687.
[81] Y. Wu and P. Yang*, "Direct Observation of Vapor-Liquid-Solid Nanowire Growth," J. Am. Chem. Soc., pp. 3165-3166, 2001.
[82] M. Ghosh, R. Bhattacharyya, and A. K. Raychaudhuri, "Growth of compact arrays of optical quality single crystalline ZnO nanorods by low temperature method," Bulletin of Materials Science, vol. 31, no. 3, pp. 283-289, 2008, doi: 10.1007/s12034-008-0046-9.
[83] F. N. I. Sari and J. M. Ting, "MoS2 /MoOx -Nanostructure-Decorated Activated Carbon Cloth for Enhanced Supercapacitor Performance," ChemSusChem, vol. 11, no. 5, pp. 897-906, Mar 9 2018, doi: 10.1002/cssc.201702295.
[84] J. Wu et al., "Hierarchical MoS2/Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries," Journal of Materials Chemistry A, vol. 6, no. 14, pp. 5668-5677, 2018, doi: 10.1039/c7ta11119c.
[85] M. H. Heyne et al., "Multilayer MoS2 growth by metal and metal oxide sulfurization," Journal of Materials Chemistry C, vol. 4, no. 6, pp. 1295-1304, 2016, doi: 10.1039/c5tc04063a.
[86] P. Ju et al., "3D walnut-shaped TiO2/RGO/MoO2@Mo electrode exhibiting extraordinary supercapacitor performance," Journal of Materials Chemistry A, vol. 5, no. 35, pp. 18777-18785, 2017, doi: 10.1039/c7ta05160c.
[87] L. Huang et al., "Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode," Journal of Materials Chemistry A, vol. 5, no. 6, pp. 2897-2903, 2017, doi: 10.1039/c6ta10433a.
[88] R. S. Datta et al., "Highly active two dimensional α-MoO3−x for the electrocatalytic hydrogen evolution reaction," Journal of Materials Chemistry A, vol. 5, no. 46, pp. 24223-24231, 2017, doi: 10.1039/c7ta07705j.
[89] A. K. Thakur, M. Majumder, R. B. Choudhary, and S. B. Singh, "MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications," Journal of Power Sources, vol. 402, pp. 163-173, 2018, doi: 10.1016/j.jpowsour.2018.09.029.