| 研究生: |
吳佳興 Wu, Chia-hsing |
|---|---|
| 論文名稱: |
以模型為基礎之影像對位系統應用於立體膝關節運動重建 A model-based image ragistration system for 3-D knee motion reconstruction |
| 指導教授: |
孫永年
Sun, Yung-nien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 核磁共振 、影像對位 、立體膝關節運動 、膝關節 、動態X光 |
| 外文關鍵詞: | knee joint, MR, fluoroscopic, image registration, 3-D knee motion |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膝關節系統在人體下肢運動中扮演不可或缺的角色,由於它在運動過程中會承受大於體重數倍的壓力,因此膝關節系統容易產生運動傷害或是失去部分功能。欲探討膝關節疾病的成因,了解膝關節內部骨塊的運動是很重要的。在本篇論文裡,我們提出一個膝關節模型為基礎的影像對位系統,將多姿勢核磁共振(MR)影像之三維靜態空間資訊與單平面動態X光(Fluoroscopy)影像之時間資訊結合,以重建立體膝關節之運動。這個系統包含了膝關節模型建立以及模型為基礎的影像對位兩個部份。在模型建立方面,我們從多組不同姿勢的核磁共振影像中,建立一個包含膝蓋內部骨塊的幾何形狀以及關節運動系統的膝關節模型。在影像對位的部份,根據本論文提出的模型為基礎的對位方法,膝關節模型將被對位至動態X光影像序列。在對位的過程中,我們提出一個非對應點刪除的機制,使對位結果能避免陷於不正確的區域解。除此之外,此膝關節模型在對位過程中適當地運用了膝關節的結構限制,使得運動重建的結果變得更為合理可靠。在實驗部分,我們利用動物死體進行對位準確性的驗證。在不同的膝蓋骨塊上,皆獲得了小於1.5公厘(millimeter)之平均距離誤差,顯示我們提出之對位方法具有一定的準確性。此外,我們也將對位的結果利用幾何內插的方式,重建出立體膝關節運動。
The knee joint plays an essential role in human movement. As the knee joint undertakes the pressure much larger than the body weight during motion, it has higher probability to get sport injuries or lose partial functions. To study the causes of knee diseases, understanding the knee motion is very important. In this paper we propose a model-based image registration system, which integrates the spatial information of multi-postural Magnetic Resonance (MR) images with the temporal information from single planar fluoroscopic videos, to reconstruct the three-dimensional (3-D) knee motion. The proposed system is divided into model construction and model-based image registration steps. In the first step, we construct a knee model that consists of bone shapes and articulated joint system based on multi-postural MR images. In the registration step, the constructed model is registered to a sequence of fluoroscopic images by using the proposed model-based image registration method. A non-corresponding point removal mechanism is also designed to avoid the undesired local solutions in the registration process. Moreover, the proposed knee model can provide proper constraints of knee structure in the registration process so that the reconstructed knee motion looks like more reasonable and plausible. In the experiments, the accuracy of the proposed method is validated based on animal cadaver. Very small registration errors (less than 1.5mm) are achieved on each knee bone segment. The 3-D knee motion reconstructed by interpolating the registration results is also demonstrated.
[1] http://www.uptodateonline.com/patients/content/topic.do;jsessionid=746548BEE389A72E3BBD7B543E2F8F49.0503?topicKey=~CFBF3sU4mpuUO9&view=print
[2] D. R. Wilson, J. D. Feikes, J. J. O’Connor, “Ligaments and articular contact guide passive knee flexion,” Journal of Biomechanics, vol. 31, pp.1127-1136, 1998.
[3] D. R. Wilson, J. D. Feikes, A. B. Zavatsky, J. J. O’Connor, “The components of passive knee movement are coupled to flexion angle,” Journal of Biomechanics, vol. 33, pp.465-473, 2000.
[4] V. B. Zordan, N. C. Van Der Horst, “Mapping optical motion capture data to skeletal motion using a physical model,” In proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, pp.245-250, 2003.
[5] Y. Zhu, J. X. Chen, S. Xiao, E. B. Macmahon “3D knee modeling and biomechanical simulation,” Computing in Science & Engineering, vol. 1, no. 4, pp.82-87, 1999.
[6] J. X. Chen, H. Wechsler, P. J. Mark, Y. Zhu, E. B. Macmahon “Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization”, IEEE Transaction on Biomedical Engineering, vol. 48, no. 9, pp.1042-1052, 2001.
[7] Y. Zhu, J. X. Chen, “Simulation and visualization of knee joint contact using deformable model,” in Proceedings of the 4th IEEE International Conference on Computer and Information Technology (CIT), pp.708-715, 2004.
[8] D. K. Ramsey, M. Lamontagne, P. F. Wretenberg, A. Valentin, B. Engström, G. Németh, “Assessment of functional knee bracing: an in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee,” Clinical Biomechanics, vol. 16, no. 1, pp.61-70, 2001.
[9] F. Lin, M. Makhsous, A. H. Chang, R. W. Hendrix, L. Q. Zhang, “In vivo and noninvasive six degrees of freedom patellar tracking during voluntary knee movement,” Clinical Biomechanics, vol. 18, pp.401-409, 2003.
[10] H. Livyatan, Z. Yaniv, L. Joskowicz, “Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT,” IEEE Trans. on Medical Imaging, vol. 22, no. 11, pp.1395-1406, 2003.
[11] D. J. Kriegman, J. Ponce, “On recognizing and positioning curved 3-D objects from image contours,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 12, pp.1127-1137, 1990.
[12] S. Lavallée, R. Szeliski, “Recovering the position and orientation of free-form objects from image contours using 3D distance maps,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 17, no. 4, pp.378-390, 1995.
[13] C. M. Cyr, A. F. Kamal, T.B. Sebastian, B.B. Kimia, “2D-3D registration based on shape matching,” Proc. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp.198-203, 2000.
[14] D. B. Russakoff, T. Rohlfing, J. R. Adler Jr, C. R. Maurer Jr, “Intensity-based 2D-3D spine image registration incorporating a single fiducial marker,” Academic Radiology, vol. 12, no.1, pp.37-50, January 2005.
[15] L. Zöllei, L. Grimson, A. Norbash, and W. Wells, “2D-3D rigid registration of X-ray fluoroscopy and CT images using mutual information and sparsely sampled histogrram estimators,” in Proc. IEEE Computer Vision and Pattern Recognition Conf., pp.696-703, 2001.
[16] W. H. Press, W. T. Vetterling, S. A. Teukolsky, B. P. Flannery, “Numerical recipes in C 2nd edition,” Cambridge University Press, Cambridge, England, 1992.
[17] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. On Medical Imaging, vol. 16, no. 2, pp.187-198, 1997.
[18] D. Tomaževič, B. Likar, T. Slivnik, F. Pernuš, “3-D/2-D registration of CT and MR to X-ray images,” IEEE Trans. on Medical Imaging, vol. 22, no. 11, pp.1407-1416, 2003.
[19] S. A. Banks, W. A. Hodge, “Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy,” IEEE Trans. on Biomedical Engineering, vol. 43, no. 6, pp.638-649, 1996.
[20] H. Rahman, B. J. Fregly, S. A. Banks, “Accurate measurement of three-dimensional natural knee kinematics using single-plane fluoroscopy,” Summer Bioengineering Conference, 2003.
[21] T. Yamazaki, T. Watanabe, Y. Nakajima, K. Sugamoto, T. Tomita, H. Yoshikawa, S. Tamura, “Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy,” IEEE Trans. Med. Imag., vol. 23, no. 5, pp.602-612, 2004.
[22] H. Haneishi, S. Hujita, T. Kohno, M. Suzuki, J. Miyagi, H. Moriya, “Estimation of three-dimensional knee joint movement using bi-plane X-ray fluoroscopy and 3D-CT,” Medical Imaging 2005: Image Processing, Proceedings of the SPIE, vol. 5747, pp.1667-1673, 2005.
[23] H. Haneishi, T. Kohno, M. Suzuki, H. Moriya, S. Mori, M. Endo, “Motion analysis of knee joint using dynamic volume images,” Medical Imaging 2006: Physiology, Function, and Structure from Medical Images, Proceedings of the SPIE, vol. 6143, pp.695-702, 2006.
[24] J. M. Boone, J. A. Seibert, W. A. Barrett, E. A. Blood, “Analysis and correction of imperfections in the image intensifier-TV-digitizer imaging chain,” Med. Phys., vol. 18, no. 2, pp.236-242, March 1991.
[25] http://en.wikipedia.org/wiki/Distortion_(optics)
[26] B. A. Schueler, X. Hu, “Correction of image intensifier distortion for three-dimensional X-ray angiography,” SPIE: Medical Imaging, vol. 2432, pp.272-279, 1995.
[27] L. Joskowicz, C. Milgrom, A. Simkin, L. Tockus, Z. Yaniv, “FRACAS: a system for computer-aided image-guided long bone fracture surgery,” Computer Aided Surgery, vol. 3, pp.271-288, 1998.
[28] E. Gronenschild, J. Rose, G. Mulkens, “The accuracy and reproducibility of an algorithm to correct for geometric image distortion in quantitative coronary angiography,” IEEE Conference Proceedings, Computers in Cardiology, pp.105-108, 1996.
[29] H. Livyatan, Z. Yaniv, L. Joskowicz, “Robust automatic C-arm calibration for fluoroscopy-based navigation: a practical approach,” Proc 5th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), October 2002.
[30] N. S. Cosby, K. W. Leszczynski, “Computer-aided radiation therapy simulation: image intensifier spatial distortion correction for large field of view digital fluoroscopy,” Phys. Med. Biol., vol. 43, pp.2265-2278, 1998.
[31] Z. Yaniv, L. Joskowicz, A. Simkin, M. Graza-Jinich, C. Milgrom, “Fluoroscopic image processing for computer-aided orthopaedic surgery,” 1st Int. Conf. on Medical Computing and Computer-Assisted Intervention (MICCAI), 1998.
[32] W. E. Lorensen, H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm”, Computer Graphics, vol. 21, no. 4, July 1987.
[33] Y. N. Sun, F. M. Chang, S. R. Wang, “3-D image analysis, display, and measurement for fetal sonography (III),” Engineering Science & Technology Bulletin, NSC. (工程科技通訊), vol. 58, pp.83-86.
[34] G. Wu, P. R. Cavanagh, “ISB recommendations for standardization in the reporting of kinematic data,” Journal of Biomechanics, vol. 28, no. 10, pp.1257-1261, 1995.
[35] E. S. Grood, W. J. Suntay, “A joint coordinate system for the clinical description of three-dimensional motions: application to the knee,” Journal of Biomechanics Engineering, vol. 105, pp.136-144, 1983.
[36] G. R. Pennock, K. J. Clark, “An anatomy-based coordinate system for the description of the kinematic displacements in the human knee,” Journal of Biomechanics, vol. 23, pp.1209-1218, 1990.
[37] H. C. Chen, I. M. Jou, Y. N. Sun, “Registration-based hand bones segmentation with 3D articulated model for multi-posture MR images,” 16th International Conference on Mechanics in Medicine and Biology, July 2008.
[38] H. Wang, J. S. M Vergeest, Y. Song, T. Weigers, “Automated 3D scan multi-view registration based on rotation estimation,” The 15th Int. Conf. on Computer Graphics, Visualization and Computer Vision, pp.137-145, 2007.
[39] M. Lengsfeld, J. Ahlers, G. Ritter, “Kinematics of the patellafemoral joint,” Archives of Orthopaedic and Trauma Surgery, vol. 109, pp.280-283, 1990.
[40] R. C. Gonzalez, R. E. Woods, “Digital image processing,” Prentice-Hall, Englewood Cliffs, NJ, 2002.
[41] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. H. Romeny, J. B. Zimmerman, K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision., Graphics, and Image Processing, vol. 39, pp.355-368, Sept. 1987.
[42] G. Gerig, O. Kubler, R. Kikinis, F. A. Jolesz, “Nonlinear anisotropic filtering of MRI data,” IEEE Trans. on Medical Imaging, vol. 11, no. 2, pp.221-232, Jun 1992.
[43] J. F. Canny, “A computational approach to edge detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.679-698, 1986.
[44] O. Cuisenaire, “Distance transformations: fast algorithms and applications to medical image processing,” PhD thesis, Telecommunications Laboratory, UCL, Louvain-la-Neuve, Belgium, 1999.
[45] G. Borgefors, “Hierarchical chamfer matching: a parametric edge matching algorithm,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp.849-865, 1988.
[46] G. K. Cole, B. M. Nigg, J. L. Ronsky, M. R. Yeadon, “Application of the joint coordinate system to three-dimension joint attitude and movement representation: a standardization proposal,” Journal of Biomechanical Engineering, vol. 115, pp.344-349, 1993.