| 研究生: |
陳慧吉 Chen, Huey-Jyi |
|---|---|
| 論文名稱: |
光學雷達輔助民航機降落可行性分析 Feasibility Study of Lidar for Aircraft Landing aid |
| 指導教授: |
李劍
Li, Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 民航研究所 Institute of Civil Aviation |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 民航機降落 、光學雷達 、陣列掃描 、姿態估計 |
| 外文關鍵詞: | Aircraft Landing, Lidar, SPAD Array Scanning, Attitude Estimation |
| 相關次數: | 點閱:88 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文考慮光學雷達的基本原理及其特性,應用於民航機降落性
能及可行性評估。針對光學雷達與雷達測高儀輔助飛機降落之性能評
估,由於目前民航機飛機皆配有雷達測高儀,光學雷達相較於傳統雷達
擁有更快的頻率以及更好的距離解析度。推導光學雷達與雷達方程式以
及訊號噪音比方程式,接著探討飛機降落條件及限制,以目前車用對應
光學雷達特性能否達成需求,例如:光波的波長、角度限制、探測方式、
距離等。
模擬光學雷達及雷達在相同條件下的訊號噪音比表現,光學雷達在
傾斜角度下測量的誤差與姿態估計方法,僅利用光學雷達獲得高度及姿
態資訊,最後以市面上可取得的光學雷達測距儀進行實驗,開發其陣列
掃描功能,驗證光學雷達姿態估計及比較不同感測器陣列數量測量所產
生的影響。
This paper considers the basic principles and characteristics of Lidar and applies it
to civil aircraft landing then evaluate the performance and feasibility, especially
the vertical distance measure performance from Lidar and radar altimeter, because
the current civil aircraft are equipped with radar altimeter and Lidar has a faster
frequency and better range resolution than radar.
Derive the Lidar and radar power equation and the signal-to-noise ratio equation,
then discuss the aircraft landing conditions and constraints, whether the
corresponding Lidar characteristics can meet the requirements, such as the
wavelength of the light wave, the angle limit, the detection method, and the
operation range.
Simulate the signal-to-noise ratio performance of Lidar and radar under the same
conditions, and the measurement error and attitude estimation method of LiDAR
measurement during slant angle. Finally, experiments were carried out with a
commercial Lidar rangefinder to develop its array scanning function, and to verify
Lidar attitude estimation and to comparing results from different arrays then
evaluate the effect from different array.
[1] R.D. Richmond, S.C. Cain, Direct-detection LADAR systems, SPIE Press Bellingham, 2010.
[2] R.M. O’Donnell, Introduction to radar systems, Massachusetts Institute of Technology: MIT OpenCourseWare, Primavera, 2007.
[3] S. Yonemura, A. Tomiki, T. Toda, T. Kobayashi, Feasibility of a Radar Altimeter for an Unmanned Aerial Vehicle Cruising in the Mars' Atmosphere, Journal of Selected Areas in Telecommunications, (JSAT), 4(2), 2014.
[4] J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, M. Muzal, Comparison of 905 nm and 1550 nm semiconductor laser rangefinders' performance deterioration due to adverse environmental conditions, OptoElectronics Review, 22(3), pp. 183-190, 2014.
[5] D. Selmanaj, M. Corno, G. Panzani, S.M. Savaresi, On Vehicle Pitch Estimation via solid-state LIDAR, IFAC-PapersOnLine, 53(2), pp. 13904-13909, 2020.
[6] L.B. Jack, Laser altimetry measurements from aircraft and spacecraft, Proceedings of the IEEE, 77(3), pp. 463-477, 1989
[7] T. Sandner, H. Shenk, C. Drabe, Application Specific Micro Scanning Mirrors, Fraunhofer Institute for Photonic Microsystems (IPMS), Sensors, Proc, 2011.
[8] N. Mokey, Solid-state lidar: The key to cheap self-driving cars-Digital Trends, 2018.
[9] Electromagnetic radiation, Wikipedia, The Free Encyclopedia, 2021.
[10] Lambert's cosine law, Wikipedia, The Free Encyclopedia, 2021.
[11] Responsivity, Wikipedia, The Free Encyclopedia, 2021.
[12] Beamwidth, Wikipedia, The Free Encyclopedia, 2020.
[13] D. Gatziolis, H. Andersen, A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest, Gen. Tech. Rep. PNWGTR-768. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 32, pp. 768, 2008.
[14] Laser safety, Wikipedia, The Free Encyclopedia, 2021.
[15] L. Zhaoyu, G. Chunfeng, W. Zhaoying, J. Dongfang, Y. Tianxin, Basics and developments of frequency modulation continuous wave LiDAR, OptoElectronic Engineering, 46(7), pp. 190038-1-190038-14, 2019.
[16] J. Tang, A. Yellepeddi, S. Demirtas, C. Barber, Tracking to Improve Detection Quality in Lidar For Autonomous Driving, ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 2683-2687, 2020.
[17] ICAO, Aircraft Operations, 2018.
[18] S. Royo, M. Ballesta-Garcia, An overview of lidar imaging systems for autonomous vehicles, Applied sciences, 9(19), pp. 4093, 2019.
[19] Quanergy, OPA-based Solid State LiDAR, 2021.
[20] STMicroelectronics, VL53L1X.