簡易檢索 / 詳目顯示

研究生: 陳慧吉
Chen, Huey-Jyi
論文名稱: 光學雷達輔助民航機降落可行性分析
Feasibility Study of Lidar for Aircraft Landing aid
指導教授: 李劍
Li, Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 60
中文關鍵詞: 民航機降落光學雷達陣列掃描姿態估計
外文關鍵詞: Aircraft Landing, Lidar, SPAD Array Scanning, Attitude Estimation
相關次數: 點閱:88下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文考慮光學雷達的基本原理及其特性,應用於民航機降落性
    能及可行性評估。針對光學雷達與雷達測高儀輔助飛機降落之性能評
    估,由於目前民航機飛機皆配有雷達測高儀,光學雷達相較於傳統雷達
    擁有更快的頻率以及更好的距離解析度。推導光學雷達與雷達方程式以
    及訊號噪音比方程式,接著探討飛機降落條件及限制,以目前車用對應
    光學雷達特性能否達成需求,例如:光波的波長、角度限制、探測方式、
    距離等。
    模擬光學雷達及雷達在相同條件下的訊號噪音比表現,光學雷達在
    傾斜角度下測量的誤差與姿態估計方法,僅利用光學雷達獲得高度及姿
    態資訊,最後以市面上可取得的光學雷達測距儀進行實驗,開發其陣列
    掃描功能,驗證光學雷達姿態估計及比較不同感測器陣列數量測量所產
    生的影響。

    This paper considers the basic principles and characteristics of Lidar and applies it
    to civil aircraft landing then evaluate the performance and feasibility, especially
    the vertical distance measure performance from Lidar and radar altimeter, because
    the current civil aircraft are equipped with radar altimeter and Lidar has a faster
    frequency and better range resolution than radar.
    Derive the Lidar and radar power equation and the signal-to-noise ratio equation,
    then discuss the aircraft landing conditions and constraints, whether the
    corresponding Lidar characteristics can meet the requirements, such as the
    wavelength of the light wave, the angle limit, the detection method, and the
    operation range.
    Simulate the signal-to-noise ratio performance of Lidar and radar under the same
    conditions, and the measurement error and attitude estimation method of LiDAR
    measurement during slant angle. Finally, experiments were carried out with a
    commercial Lidar rangefinder to develop its array scanning function, and to verify
    Lidar attitude estimation and to comparing results from different arrays then
    evaluate the effect from different array.

    摘要 i 表目錄 x 圖目錄 xi 第一章 緒論 1 1-1前言 1 1-2動機與目的 2 1-3文獻回顧 3 1-4研究架構 4 第二章 光學雷達與雷達 6 2-1光學雷達基本原理 6 2-2光波與無線電波差異 8 2-3光學雷達與雷達方程式 10 2-4訊號噪音比分析 14 2-5 光學雷達輔助降落特性 17 2-5-1 探測距離 17 2-5-2 角度限制 19 2-5-3 反射率 22 2-5-4 工作波長 23 2-5-5 探測方式 26 第三章 模擬與誤差分析 28 3-1 訊號噪音比 28 3-2 傾斜角度距離測量 30 3-3 姿態估計 32 3-3-1公式推導 33 3-3-2 誤差分析 34 第四章 陣列掃描及姿態估計實作 36 4-1感測器簡介 36 4-2 VL53L1X量測結果及相關規格 37 4-2-1量測數值 37 4-2-2距離模式 38 4-2-3時間預算與測量週期 39 4-2-4 SPAD陣列範圍(ROI)與接收器視角(FOV) 39 4-3 SPAD陣列掃描-光學雷達 42 4-3-1串接架構 42 4-3-2開發SPAD陣列掃描-光學雷達 42 4-3-3展現SPAD陣列掃描-光學雷達 46 4-4 SPAD陣列掃描-估計姿態 48 4-4-1 實驗架設 48 4-4-2 實驗方法 48 4-4-3 實驗結果 50 第五章 結論與未來展望 55 參考文獻 58

    [1] R.D. Richmond, S.C. Cain, Direct-detection LADAR systems, SPIE Press Bellingham, 2010.
    [2] R.M. O’Donnell, Introduction to radar systems, Massachusetts Institute of Technology: MIT OpenCourseWare, Primavera, 2007.
    [3] S. Yonemura, A. Tomiki, T. Toda, T. Kobayashi, Feasibility of a Radar Altimeter for an Unmanned Aerial Vehicle Cruising in the Mars' Atmosphere, Journal of Selected Areas in Telecommunications, (JSAT), 4(2), 2014.
    [4] J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, M. Muzal, Comparison of 905 nm and 1550 nm semiconductor laser rangefinders' performance deterioration due to adverse environmental conditions, OptoElectronics Review, 22(3), pp. 183-190, 2014.
    [5] D. Selmanaj, M. Corno, G. Panzani, S.M. Savaresi, On Vehicle Pitch Estimation via solid-state LIDAR, IFAC-PapersOnLine, 53(2), pp. 13904-13909, 2020.
    [6] L.B. Jack, Laser altimetry measurements from aircraft and spacecraft, Proceedings of the IEEE, 77(3), pp. 463-477, 1989
    [7] T. Sandner, H. Shenk, C. Drabe, Application Specific Micro Scanning Mirrors, Fraunhofer Institute for Photonic Microsystems (IPMS), Sensors, Proc, 2011.
    [8] N. Mokey, Solid-state lidar: The key to cheap self-driving cars-Digital Trends, 2018.
    [9] Electromagnetic radiation, Wikipedia, The Free Encyclopedia, 2021.
    [10] Lambert's cosine law, Wikipedia, The Free Encyclopedia, 2021.
    [11] Responsivity, Wikipedia, The Free Encyclopedia, 2021.
    [12] Beamwidth, Wikipedia, The Free Encyclopedia, 2020.
    [13] D. Gatziolis, H. Andersen, A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest, Gen. Tech. Rep. PNWGTR-768. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 32, pp. 768, 2008.
    [14] Laser safety, Wikipedia, The Free Encyclopedia, 2021.
    [15] L. Zhaoyu, G. Chunfeng, W. Zhaoying, J. Dongfang, Y. Tianxin, Basics and developments of frequency modulation continuous wave LiDAR, OptoElectronic Engineering, 46(7), pp. 190038-1-190038-14, 2019.
    [16] J. Tang, A. Yellepeddi, S. Demirtas, C. Barber, Tracking to Improve Detection Quality in Lidar For Autonomous Driving, ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 2683-2687, 2020.
    [17] ICAO, Aircraft Operations, 2018.
    [18] S. Royo, M. Ballesta-Garcia, An overview of lidar imaging systems for autonomous vehicles, Applied sciences, 9(19), pp. 4093, 2019.
    [19] Quanergy, OPA-based Solid State LiDAR, 2021.
    [20] STMicroelectronics, VL53L1X.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE