| 研究生: |
梁晉維 Liang, Jin-Wei |
|---|---|
| 論文名稱: |
建置適用於混合燃氣及強氧化劑之層流火焰速度量測系統 Development of laminar burning velocity measurement system in multifuel or strong oxidizer premixed flames |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 層流火焰速度 、紋影拍攝法 、混合燃氣 、強氧化劑 、一氧化二氮 |
| 外文關鍵詞: | Laminar burning velocity, Schlieren measurement, Multiple fuels, Strong oxidizers, Nitrous oxide |
| 相關次數: | 點閱:66 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提供一套適用於預混火焰的層流火焰速度量測系統,可以應用在混合燃氣以及強氧化劑的燃燒條件。在當量比為0.8到1.4的範圍中,利用紋影拍攝法獲取甲烷/空氣、甲烷/一氧化二氮及甲烷/一氧化碳/氫氣/空氣的二維火焰面長度,並根據質量守恆定理,計算出受到拉伸的層流火焰速度。接著透過Markstein length以及適用於長方形燃燒器的流速(Bulk velocity)的校正,將速度轉為未拉伸層流火焰速度。為了驗證提出的量測系統準確性,在甲烷/空氣的預混燃燒條件下,使用GRI 3.0反應機制的數值模擬計算一維未拉伸層流火焰速度,並與實驗結果相比。實驗與模擬結果顯示,兩者在當量比為0.85到1.2之間的差異皆小於3.8%。隨後,應用此量測系統於混合燃氣以及強氧化劑的預混火焰,檢測其對複雜的燃燒條件的計算結果,並篩選出適用於強氧化劑的反應機制。
The present study centers on the experimental determination of laminar burning velocity for critical premixed flames with multiple fuels or high energetic oxidizers. Experiments were conducted with a slot burner in CH4/air, CH4/N2O, and syngas (CH4/CO/H2)/air premixed flames with the equivalence ratios varied from 0.8 to 1.4. With the flame surface area determined from the schlieren measurement system, stretch effect corrected by Markstein length, the unstretched laminar burning velocity can be garnered according to the conservation of mass. Initially, experimental results of CH4/air premixed flame velocities are validated by comparing with one-dimensional unstretched laminar burning velocities via numerical simulations with the GRI 3.0 mechanism. The experimental results in equivalence ratio ranging from 0.85 to 1.2 demonstrated the velocity differences less than 3.8%. Then the validated burning velocity measurement system is implemented in CH4/N2O and syngas/air premixed flames. Eventually, appropriate chemical mechanisms, such as USM or UGM, can be validated for the numerical simulation of critical premixed flames via the proposed laminar burning velocity measurement system.
[1] M. Matalon, On flame stretch, Combustion Science and Technology 31 (1983) 169-181.
[2] W. Wang, H. Zhang, Laminar burning velocities of C2H4/N2O flames: Experimental study and its chemical kinetics mechanism, Combustion and Flame 202 (2019) 362-375.
[3] A.N. Mazas, B. Fiorina, D.A. Lacoste, T. Schuller, Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames, Combustion and Flame 158 (2011) 2428-2440.
[4] J.R. Grovem., F. Hoare., J.W. Linnett, The shadow cast by a Bunsen flame, its production and usefulness, Transactions of the Faraday Society 46 (1950) 745-755.
[5] W. Li, Q. Wang, Y. Jiang, Inhibition of turbulent methane/air premixed bunsen flames by dimethyl methylphosphonate, Fuel 288 (2021) 119695.
[6] J. Wang, Y. Nie, X. Cai, S. Guo, W. Zhang, Y. Xie, Z. Huang, Investigation on the highly negative curved syngas Bunsen flame and the critical local Karlovitz number when tip opening, Fuel 215 (2018) 429-437.
[7] R.V. Andrade, L.A. Cortabarria Castañeda, D.M. Yepes Maya, P.S. Pedroso Cesar Corrêa Junior, L.R. Mello e Pinto, E.E. Silva Lora, C.A. Vilas Bôas de Sales Oliveira, B.A. Pinto, Assessment of laminar flame velocity of producer gas from biomass gasification using the Bunsen burner method, International Journal of Hydrogen Energy 45 (2020) 11559-11568.
[8] D. Lapalme, R. Lemaire, P. Seers, Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results, International Journal of Hydrogen Energy 42 (2017) 8314-8328.
[9] R. Addabbo, J.K. Bechtold, M. Matalon, Wrinkling of spherically expanding flames, Proceedings of the Combustion Institute 29 (2002) 1527-1535.
[10] N. Burali, S. Lapointe, B. Bobbitt, G. Blanquart, Y. Xuan, Assessment of the constant non-unity Lewis number assumption in chemically-reacting flows, Combustion Theory and Modelling 20 (2016) 632-657.
[11] C.K. Law, G. Jomaas, J.K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment, Proceedings of the Combustion Institute 30 (2005) 159-167.
[12] N. Bouvet, F. Halter, C. Chauveau, Y. Yoon, On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures, International Journal of Hydrogen Energy 38 (2013) 5949-5960.
[13] G. Ozel-Erol, M. Klein, N. Chakraborty, Lewis Number Effects on Flame Speed Statistics in Spherical Turbulent Premixed Flames, Flow, Turbulence and Combustion 106 (2021) 1043-1063.
[14] N. Chakraborty, R.S. Cant, Effects of Lewis number on scalar transport in turbulent premixed flames, Physics of Fluids 21 (2009) 035110.
[15] N. Chakraborty, R.S. Cant, Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames, Combustion and Flame 156 (2009) 1427-1444.
[16] A.M. Steinberg, P.E. Hamlington, X. Zhao, Structure and dynamics of highly turbulent premixed combustion, Progress in Energy and Combustion Science 85 (2021) 100900.
[17] J.E. Temme, A. Skiba, T. Wabel, J.F. Driscoll, Premixed turbulent combustion in high reynolds number regimes' of thickened flamelets and distributed reactions, 8th U. S. National Combustion Meeting 3 (2013), Paper 070LT-0290.
[18] E.G. Groff, The cellular nature of confined spherical propane-air flames, Combustion and Flame 48 (1982) 51-62.
[19] J. Bechtold, M. Matalon, Hydrodynamic and diffusion effects on the stability of spherically expanding flames, Combustion and Flame 67 (1987) 77-90.
[20] D. Bradley, C.G.W. Sheppart, R. Woolley, D. Greenhalgh, R. Lockett, The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions, Combustion and Flame 122 (2000) 195-209.
[21] D. Bradley, C. Harper, The development of instabilities in laminar explosion flames, Combustion and Flame 99 (1994) 562-572.
[22] G. Makhviladze, V. Melikhov, V. Rabinkov, Flame propagation in the channel and flammability limits, Fire Safety Science 3 (1991) 875-883.
[23] D. Razus, M. Mitu, V. Giurcan, C. Movileanu, D. Oancea, Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane–N2O mixtures, Process Safety and Environmental Protection 114 (2018) 240-250.
[24] L. Selle, T. Poinsot, B. Ferret, Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner, Combustion and Flame 158 (2011) 146-154.
[25] C.T. Chong, S. Hochgreb, Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV), Proceedings of the Combustion Institute 33 (2011) 979-986.
[26] S. Wang, Z. Wang, Y. He, X. Han, Z. Sun, Y. Zhu, M. Costa, Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method, Fuel 259 (2020) 116152.
[27] O.A. Powell, P. Papas, C. Dreyer, Laminar Burning Velocities for Hydrogen-, Methane-, Acetylene-, and Propane-Nitrous Oxide Flames, Combustion Science and Technology 181 (2009) 917-936.
[28] C. Movileanu, D. Razus, D. Oancea, Additive Effects on the Burning Velocity of Ethylene–Air Mixtures, Energy & Fuels 25 (2011) 2444-2451.
[29] V. Zakirov., M. Sweeting., T. Lawrence., J. Sellers., Nitrous oxide as a rocket propellant, Acta Astronautica 48 (2001) 353-362.
[30] A. Davidhazy, Introduction to shadowgraph and schlieren imaging, Article No. 478, Rochester Institute of Technology, (2006).
[31] D. Bunjong, N. Pussadee, P. Wattanakasiwich, Optimized conditions of Schlieren photography, Journal of Physics: Conference Series 1144 (2018) 012097.
[32] J. Natarajan, T. Lieuwen, J. Seitzman, Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure, Combustion and Flame 151 (2007) 104-119.
[33] C.J. Rallis, A.M. Garforth, The determination of laminar burning velocity, Progress in Energy and Combustion Science 6 (1980) 303-329.
[34] S. Gersen, M. Van essen, Dnv, O. Teerling, Heating, DEMONSTRATION OF HIGH PERFORMANCE (LOW NOx ) DOMESTIC HYDROGEN BOILERS, 2020.
[35] Z. Chen, Effects of hydrogen addition on the propagation of spherical methane/air flames: A computational study, International Journal of Hydrogen Energy 34 (2009) 6558-6567.
[36] H. Chu, L. Xiang, S. Meng, W. Dong, M. Gu, Z. Li, Effects of N2 dilution on laminar burning velocity, combustion characteristics and NOx emissions of rich CH4–air premixed flames, Fuel 284 (2021) 119017.
[37] F.H.V. Coppens, J. De Ruyck, A.A. Konnov, Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane+air flames, Experimental Thermal and Fluid Science 31 (2007) 437-444.
[38] L. Xiang, W. Dong, J. Hu, X. Nie, F. Ren, H. Chu, Numerical study on CH4 laminar premixed flames for combustion characteristics in the oxidant atmospheres of N2/CO2/H2O/Ar-O2, Journal of the Energy Institute 93 (2020) 1278-1287.
[39] F. Ren, L. Xiang, H. Chu, H. Jiang, Y. Ya, Modeling Study of the Impact of Blending N2, CO2, and H2O on Characteristics of CH4 Laminar Premixed Combustion, Energy & Fuels 34 (2020) 1184-1192.
[40] J.C. Kramlich., W.P. Linak., Nitrous oxide behavior in the Atmosphere, and in combustion and industrial systems, Progress in Energy and Combustion Science, 20, (1994) 149-202.
[41] A.F. T. Faravelli, E. Ranzi, Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures, Combustion and Flame 132 (2003) 188–207.
[42] S. Parres-Esclapez, M.J. Illán-Gómez, C.S.-M. de Lecea, A. Bueno-López, On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt, Applied Catalysis B: Environmental 96 (2010) 370-378.
[43] O. Mathieu, J.M. Pemelton, G. Bourque, E.L. Petersen, Shock-induced ignition of methane sensitized by NO2 and N2O, Combustion and Flame 162 (2015) 3053-3070.
[44] A.A. Konnov, I.V. Dyakov, Nitrous oxide conversion in laminar premixed flames of CH4+O2+Ar, Proceedings of the Combustion Institute 32 (2009) 319-326.
[45] T. Scholte, P. Vaags, Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air, Combustion and Flame 3 (1959) 511-524.
[46] H. Sun, S.I. Yang, G. Jomaas, C.K. Law, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proceedings of the Combustion Institute 31 (2007) 439-446.
[47] M. Cherian, P. Rhodes, R. Simpson, G. Dixon-Lewis, Structure, chemical mechanism and properties of premixed flames in mixtures of carbon monoxide, nitrogen and oxygen with hydrogen and water vapour, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 303 (1981) 181-212.
[48] K.T. Walsh, J. Fielding, M.B. Long, Effect of light-collection geometry on reconstruction errors in Abel inversions, Optics Letters 25 (2000) 457-459.
[49] T. Tatsumi, T. Yoshimura, Stability of the laminar flow in a rectangular duct, Journal of Fluid Mechanics 212 (1990) 437-449.
[50] Y. Wang, A. Movaghar, Z. Wang, Z. Liu, W. Sun, F.N. Egolfopoulos, Z. Chen, Laminar flame speeds of methane/air mixtures at engine conditions: Performance of different kinetic models and power-law correlations, Combustion and Flame 218 (2020) 101-108.
[51] M. Frenklach, H. Wang, M. Goldenberg, G. Smith, D. Golden, C. Bowman, R. Hanson, W. Gardiner, V. Lissianski, M. Frenklach, GRI-Mech: An optimized detailed chemical reaction mechanism for methane combustion, Report No. GRI-95/0058, Berkeley, CA, 1995.
[52] C.T. Chong, S. Hochgreb, Measurements of laminar flame speeds of acetone/methane/air mixtures, Combustion and Flame 158 (2011) 490-500.
[53] C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law, Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, Symposium (International) on Combustion 25 (1994) 1341-1347.
[54] K.J. Bosschaart, L.P.H. de Goey, Detailed analysis of the heat flux method for measuring burning velocities, Combustion and Flame 132 (2003) 170-180.
[55] F. Halter, C. Chauveau, N. Djebaïli-Chaumeix, I. Gökalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures, Proceedings of the Combustion Institute 30 (2005) 201-208.
[56] M. Mitu, V. Giurcan, C. Movileanu, D. Razus, D. Oancea, Propagation of CH4-N2O-N2 Flames in a Closed Spherical Vessel, Processes 9 (2021) 851.
[57] D. Razus, V. Brinzea, M. Mitu, C. Movileanu, D. Oancea, Burning Velocity of Propane–Air Mixtures from Pressure–Time Records during Explosions in a Closed Spherical Vessel, Energy & Fuels 26 (2012) 901-909.
[58] M. Mitu, V. Giurcan, D. Razus, D. Oancea, Inert gas influence on the laminar burning velocity of methane-air mixtures, Journal of Hazardous Materials 321 (2017) 440-448.
[59] S.P.M. Bane, R. Mével, S.A. Coronel, J.E. Shepherd, Flame burning speeds and combustion characteristics of undiluted and nitrogen-diluted hydrogen–nitrous oxide mixtures, International Journal of Hydrogen Energy 36 (2011) 10107-10116.