| 研究生: |
陳卉瑄 Chen, Hui-Hsuan |
|---|---|
| 論文名稱: |
台灣東部重複地震序列的特性 Characteristics of Repeating Earthquake Sequences in Eastern Taiwan |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 深部滑移速率 、潛移 、池上斷層 、重複週期 、縱谷斷層 、重複地震 |
| 外文關鍵詞: | deep slip rate, creeping fault, Chihshang fault, recurrence interval, repeating earthquake, Longitudinal Valley Fault |
| 相關次數: | 點閱:131 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以大量的小規模地震釋放應變能,是潛移斷層系統上的地震活動特徵。在地震防災應用上,這種斷層系統的特殊性在於,它具有較低的大地震潛能。然而,潛移斷層帶也可能孕育大地震,台灣東部的縱谷斷層即為一例。花東縱谷斷層每年以1~3 cm/yr的潛移速率在地表快速地變形,是全世界數一數二活躍的潛移斷層帶,此斷層如何在地表潛移同時也在深部孕震一直是個未解之謎,主要原因是,有限的地表測量和地震測站,限制了我們對深部斷層行為的理解。利用重複地震(同一地方發震並具有高度相似波形的地震序列)的重複週期與地震規模的關係,已被證明可推估深部滑移率,是進一步瞭解斷層深部特性的契機。
台灣東部地震測站幾何分佈不佳以致地震定位不夠精確,因此無法以「是否同一地點發震」選定重複地震序列,而以波形相似度為門檻值來篩選重複地震則過於主觀,本研究提出一個「複合式選定準則」以客觀地選定重複地震。我們首先利用Vp/Vs重新定位方法對相似波形地震進行精確的相對定位,並以此定位結果為約制、決定地震群之相對S-P走時差及其波形相似度的雙門檻值。利用1991-2004的地震資料及此重複地震選定方法,我們發現了兩群空間上各自獨立的重複地震群,分佈於縱谷的北邊花蓮地區及南邊的池上地區。在花蓮地區的25組重複地震序列規模範圍為2.3 至4.6,沿斷層走向方向的空間分佈長達45 km,而深度分佈為10-22 km。在池上地區的30組重複地震序列規模範圍較小,為2.2 至3.4,沿斷層走向方向的空間分佈約 15 km(集中於池上斷層的北半段),而深度分佈為7-23 km。利用重複地震的週期和地震矩可以計算每個重複地震嵌塊的深部滑移速率,我們計算得知在花蓮的重複地震群顯現2.5-7.8 cm/yr的滑移量,高於池上區域的2.0-5.1 cm/yr,但兩者皆與該區的地表變形量相仿。 以池上斷層而言,重複地震集中出現於北半段、並且深部滑移速率與地表相近,2003年M 6.4的成功地震其餘震區則集中於南半段,因此我們推論池上斷層南北性質互異:北半段以潛移為主,南半段鎖住而具有大地震潛能。在花蓮地區較大規模的重複地震(M ≥ 3.8)皆為似週期性,我們發現這些週期性的重複地震序列其鄰近的背景地震活動有顯著的特徵:其數目及規模皆少而小,因此我們推論重複地震的週期性與鄰近背景地震活動有高度相關,空間上越獨立的地震嵌塊越有機會呈現規則的週期行為。與美國加州Parkfield重複地震的週期相比,東台灣的重複地震週期短約兩倍,而日本隱沒帶的重複地震短約4倍。考慮斷層滑移量因區域而異、進一步將重複週期正規化成Parkfield的滑移速率時,我們發現所有的資料點吻合同一條線性,亦即,當斷層滑移量相同時,不同區域、同等規模的重複地震會有同樣的重複週期,此表示區域的斷層滑移速率決定了重複週期。重複地震週期的分析,除了可以增進區域深部斷層特性及地震潛能的瞭解,在未來地震預報及災害評估上,亦提供了絕佳的約制。
Creeping crustal faults often generate a number of microearthquakes, and less commonly, they may also produce large earthquakes that rupture the brittle crust. The Longitudinal Valley fault (LVF) in eastern Taiwan characterized by such behavior has been known to undergo 1-3 cm/yr surface creep, probably one of the most active creeping thrust faults known in the world. The understanding of fault behavior at depth as to how a creeping fault can generate large earthquakes has been limited due to sparse sampling of seismic and geodetic stations in this area. Repeating earthquakes study has been proposed to improve the understanding of deep fault deformation, however, it also has its limitation because of the poor station coverage. In this thesis, methodology of repeating earthquake identification is developed in the region where the station coverage is sparse and one-sided. The methodology is then applied to the earthquakes in eastern Taiwan. Two major clusters of repeating earthquake sequences (RESs) are found near the north and south ends of the LVF, with variable recurrence patterns and deep slip rates. The 25 M 2.3-4.6 RESs in the Hualien area (north of the LVF) are widely distributed along the strike of the LVF over a distance of 45 km at 10-22 km depth, whereas in the Chihshang area (north of the LVF) we found 30 M 2.2-3.4 RESs at 7-23 km depth with three times shorter along-strike extent. Slip estimates from the RESs in Chihshang and Hualien indicate the slip rate range of 2.5-7.8 cm/yr and 2.0-5.1 cm/yr respectively, which is consistent with those inferred from the surface measurements. With the fact that the aftershock of M 6 event were confined to the south half of the Chihshang fault, we infer that the 30-km stretch of the Chihshang fault is creeping at north half section and locked at south half section. For the Hualien area, M ≥ 3.8 RESs are observed to be spatially isolated and are characterized by quasi-periodic recurrences, where the surrounding earthquakes are small in both number and size. It suggests that these larger RESs are probably less influenced by nearby earthquakes and therefore can recur in a regular manner. The lack of M ≥ 3.5 RESs in the Chishang area likely results from the narrowness of the creeping area, as indicated by the limited spatial extent of the RESs. Thus it is demonstrated that repeating earthquakes observation can provide information of deep fault behavior, potentially leading to well-resolved fault model and better understanding of seismic hazard assessment. Recurrence properties of these repeating earthquakes in eastern Taiwan reveals a weak variation in recurrence interval (Tr ) with seismic moment (Mo). Compared to the scaling of Tr with Mo from repeating earthquake data near Parkfield in California, the repeating data from eastern Taiwan has recurrence intervals that are 2 times shorter. Also in northeastern Japan, Tr of repeating quakes are ~4 times shorter than those expected from the Parkfield scaling law. When adjusted to account for differences in the geodetically derived slip rates for the three fault zones, however, the Tr-Mo scaling is remarkably consistent among the three regions. It suggests that the tectonic loading rate is likely the most important factor that controls the repeat time. It also suggests that there seems to exist a universal rule on recurrence interval scaling of repeating earthquakes in diverse tectonic settings.
Abe, K., Magnitudes of large shallow earthquakes from 1904 to 1980. Phys. Earth Planet. Inter., 27, 72-92, 1981.
Angelier, J., E. Barrier, and H. T. Chu, Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan, Tectonophysics, 125, 161-178, 1986.
Angelier, J., H. T. Chu, and J. C. Lee, Shear concentration in a collision zone: Kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-144, 1997.
Angelier, J., H. T. Chu, J. C. Lee, and J. C. Hu, Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan, J. Geodyn., 29, 151-185, 2000.
Anooshehpoor, A. and J. N. Brune, Quasi-static slip rate shielding by locked and creeping zones as an explanation for small repeating earthquakes at Parkfield, Bull. Seismol. Soc. Am., 91 (2), 401-403, 2001.
Aster, R. C. and J. Scott, Comprehensive characterization of waveform similarity in microearthquake data sets, Bull. Seismol. Soc. Am., 83, 1307-1314, 1993.
Baisch, S. and G. Bokelmann, Seismic waveform attributes before and after the Loma Prieta earthquake: Scattering change near the earthquake and temporal recovery, J. Geophys. Res., 106(B8), doi: 10.1029/2001JB000151, 2001.
Bakun, W. H. and T. V. McEvilly, Recurrence models and Parkfield, California, earthquakes, J. Geophys. Res., 89, 3051-3058, 1984.
Bakun, W. H., B. Aagaard, B. Dost, W. L. Ellsworth, J. L. Hardbeck, R. A. Harris, C. Ji, M. J. S. Johnston, J. Langbein, J. J. Lienkaemper, A. J. Michael, J. R. Murray, R. M. Nadeau, P. A. Reasenburg, M. S. Reichle, E. A. Roeloffs, A. Shakai, R. W. Simpson, and F. Waldhauser, Implications for prediction and hazard assessment from the 2004 Parkfield earthquake, Nature, 437, 969-974, 2005.
Barrier, E. and J. Angelier, Active collision in eastern Taiwan: The Coastal Range, Mem. Geol. Soc. China, 7, 135-159, 1986.
Beeler, N. M., T. E. Tullis, J. D. Weeks, The roles of time and displacement in the evolution effect in rock friction, Geophys. Res. Lett., 21(18), 1987-1990, 1994.
Beeler, N. M., D. L. Lockner, and S. H. Hickman, A simple stick-slip model for repeating earthquakes and its implication for microearthquakes at Parkfield, Bull. Seismol. Soc. Am., 91 (6), 1797-1804, 2001.
Ben-Zion, Y. and J. R. Rice, Slip patterns and earthquake populations along different classes of faults in elastic solids, J. Geophys. Res., 100(B7), 12,959-12,984, 1995.
Beroza, G. C., A. T. Cole, and W. L. Ellsworth, Stability of coda wave attenuation during the Loma Prieta, California, earthquake sequence, J. Geophys. Res., 100(B3), 3977-3988, 1995.
Biq, C., Collision, Taiwan-style, Mem. Geol. Soc. China, 4, 91-102, 1981.
Biq, C., Dual trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China, 15, 65-75, 1972.
Blanpied, M. L., D. A. Lockner, and J. Byerlee, An earthquake mechanism based on rapid sealing of faults, Nature, 358, 574-576, 1992.
Bowin, C., R. S. Lu, C. S. Lee, and H. Schouten, Plate convergence and accretion in the Taiwan-Luzon region, Am. Assoc. Pet. Geol. Bull., 62, 1645-1672, 1978.
Bürgmann R., D. Schmidt, R. M. Nadeau, M. d’Alessio, E. Fielding, D. Manaker, T. V. McEvilly, and M. H. Murra , Earthquake potential along the Northern Hayward Fault, California, Science, 289, 1178-1182, 2000.
Chai, B. H. T., Structure and tectonic evolution of Taiwan, Am. J. Sci., 272, 389-422, 1972.
Chemenda, A. I., R. K. Yang, J. F. Stephan, E. A. Konstantinovskaya, and G. M. Ivanov, New results from physical modelling of arc-continent collision in Taiwan: evolutionary model, Tectonophysics, 333, 159-178, 2001.
Chen, K. H., R. M. Nadeau, and R. J. Rau, Towards a universal rule on the recurrence interval scaling of repeating earthquakes?, Geophys. Res. Lett., 34, L16308, doi:10.1029/2007GL030554, 2007a.
Chen, K. H., R. M. Nadeau, and R. J. Rau, Characteristic repeating earthquakes in an arc-continent collision boundary zone: The Chihshang fault of eastern Taiwan, Earth Planet. Sci. Lett., in review, 2007b.
Chen, K. H., S. Toda and R. J. Rau, A leaping, triggered sequence along a segmented fault: the 1951 Hualien-Taitung earthquake sequence in eastern Taiwan, J. Geophys. Res., doi:10.1029/2007JB005048, in press, 2008.
Cheng, S. N., Y. T. Yeh, and M. D. Yu, The 1951 Taitung earthquake in Taiwan, J. Geol. Soc. China, 39(3), 267-285, 1996.
Cheng, S. N., T. T. Yu, Y. T. Yeh, and Z. S. Chang, Relocation of the 1951 Hualien, Taitung earthquake sequence, in Proceedings of Meteorology, Conference on Weather Analysis and Forecasting, pp. 690-699, Central Weather Bureau, Taipei, Taiwan, 1997.
Ching, K. E., R. J. Rau, and Y. Zeng, Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements, J. Geophys. Res., 112, B06422, doi:10.1029/2006JB004439, 2007.
Chun, K.-Y., G. A. Henderson, and J. Liu, Temporal changes in P wave attenuation in the Loma Prieta rupture zone, J. Geophys. Res., 109, B02317, doi:10.1029/2003JB002498, 2004.
Davis, D., J. Suppe, and F. A. Dahlen, Mechanics of fold-and-thrust belts and accretionary wedges, J. Geophys. Res., 88, 10,087-10,101, 1983.
DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425-478, 1990.
Dieterich, J. H., Time-dependent friction in rocks, J. Geophys. Res., 77, 3690-3697, 1972.
Dieterich, J. H., A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601-2618, 1994.
Dreger D., R. M. Nadeau, A. Morrish, Repeating earthquake finite-source models: Strong asperities revealed on the San Andreas fault, Geophys. Res. Lett., submitted, 2007.
Earthquake Research Committee of the Headquarters for Earthquake Research Promotion, Long-term evaluation of earthquakes in the sea off Miyagi Prefecture (in Japanese), in Publications of Earthquake Research Committee- January-December 2000, pp. 601-618, Minist. of Educ., Culture, Sports, Sci. and Technol., Govt. of Japan, Tokyo, 2001.
Efron, B. , The Jackknife, the Bootstrap, and Other Resampling Plans, SIAM, Philadelphia, 92 pp, 1982.
Efron, B. and R. Tibshirani, Statistical data analysis in the computer age, Science, 253, 390-395, 1991.
Ellsworth, W. L., Characteristic earthquakes and long-term earthquake forecasts, implications of central California seismicity, in Urban Disaster Mitigation: the Role of Science and Technology, Eds. Cheng, F.Y., and M.S. Sheu, Elsevier Science Ltd. 1-14, 1995.
Ellsworth, W. L., and L. D. Dietz, Repeating earthquakes: characteristics ad implications, Proceedings of Workshop XLVI, the 7th U.S. – Japan Seminar on Earthquake Prediction, U.S. Geological Survey Open-File Report 90-98, 226-245 pp, 1990.
Gutenberg, R. and C. F. Richter, Seismicity of the Earth and Associated Phenomena, 2nd ed., 310 pp., Princeton University Press, Princeton, New Jersey, 1954.
Habemann, R. E., Teleseismic detection in the Aleutian Island arc, J. Geophys. Res., 88, 5056-5064, 1983.
Hank, T. C. and H. Kanamori, A moment magnitude scale, J. Geophys. Res., 84, 2348-2350, 1979.
Harris, R. A. and P. Segall, Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas fault, J. Geophys. Res., 92 (B8), 7945-7962, 1987.
Ho, C. S., An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan, Ministry of Economic Affairs, ROC, 1975.
Ho, C. S., A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125, 1-16, 1986.
Hsu, H. F., Analyzing the crustal movement and structure in eastern Taiwan from trilateration networks measurements, Geodetic Engin., 27(1), 1-10, 1985. (in Chinese)
Hsu, L. and R. Bürgmann, Surface creep along the longitudinal Valley fault, Taiwan from InSAR measurements, Geophys. Res. Lett., 33, doi:10.1029/2005GL024624, 2006.
Hsu, T. L. , Geology of the Coastal Range, eastern Taiwan, Bull. Geol. Surv. Taiwan, 8, 39-63, 1956.
Hsu, T. L., Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China, 1, 95-102, 1962.
Hu, J. C., J. Angelier, J. C. Lee, H. T. Chu, and D. Byrne, Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modeling, Tectonophysics, 255, 243-268, 1996.
Hu, J. C., L. W. Cheng, H. Y. Chen, Y. M. Wu, J. C. Lee, Y. G. Chen, K. C. Lin, R. J. Rau, H. Kuochen, H. H. Chen, S.-B. Yu, and J. Angelier, Coseismic deformation revealed by inversion of strong motion and GPS data: The 2003 Chengkung earthquake in eastern Taiwan, Geophys. J. Int., 169, 667-674, doi:10.1111/j.1365-246X.2007.03359.x, 2007.
Huang, K. C., H. Kao, and Y. M. Wu, The determination of ML - MW in Taiwan, 8th Annual Meeting of Geophysical Society of China, 193-201, 2000. ( in Chinese)
Igarashi, T., T. Matsuzawa, and A. Hasegawa, Repeating earthquakes and interplate aseismic slip in the northern Japan subduction zone, J. Geophys. Res., 180, doi:10.1029/2002JB001920, 2003.
Johnson, P. A. and R. M. Nadeau, Asperity model of an earthquake: Static problem, Bull. Seismol. Soc. Am., 92 (2), 672-686, 2002.
Johnson, K. M., P. Segall, and S. B. Yu, A viscoelastic earthquake cycle model for Taiwan, J. Geophys. Res., 110, B10404, doi:10.1029/2004JB003516, 2005.
Kanamori, H. and C. R. Allen, Earthquake repeat time and average stress drop, Earthquake Source Mechanisc, AGU, 227, 1986.
Kao, H. and P. R. Jian, Seismogenic patterns in the Taiwan region: Insights from source parameter inversion of BATS data, Tectonophysics, 333, 179-198, 2001.
Kao, H., S. J. Shen, and K. F. Ma, Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region, J. Geophys. Res, 103, 7211-7229, 1998.
Kato, N., Interaction of slip on asperities: Numerical simulation of seismic cycles on a two-dimensional planar fault with nonuniform frictional property, J. Geophys. Res., 109, B12306, doi:10.1029/2004JB003001, 2004.
Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and P. Shen, Three-dimensional Vp and Vs structure models associated with the active subduction and collision tectonics in the Taiwan region, Geophy. J. Int., 162 (1), 204-220, 2005.
Kim, K. H., J. M. Chiu, J. Pujol, and K. C. Chen, Polarity reversal of active plate boundary and elevated oceanic upper mantle beneath the collision suture in central eastern Taiwan, Bull. Seismol. Soc. Am., 96 (3), 796-806, 2006.
Kimura, H., K. Kasahara, T. Igarashi, and N. Hirata, Repeating earthquake activities associated with the Philippine Sea plate subduction in the Kanto district, central Japan: A new plate configuration revealed by interplate aseismic slips, Tectonophysics, 417, 101-118, 2006.
Kissling, E., U. Kradolfer, and H. Maurer, VELEST User’s Guide-Short Introduction, Tech. Rep., Institute of Geophysics and Swiss Seismological Service, ETHZurich, 1-25, 1995.
Kuochen, H., Y. M. Wu, C. H. Chang, J. C. Hu, and W. S. Chen, Relocation of eastern Taiwan earthquakes and tectonic implications, Terr. Atmos. Ocean. Sci., 15, 647-666, 2004.
Lay, T. and Kanamori, H., Earthquake doublets in the Solomon Islands, Phys. Earth Planet. Inter., 21, 283-304, 1980.
Lee, J. C., J. Angelier, H. T., Chu, S. B. Yu, and J. C. Hu, Plate-boundary strain partintioning along the sinistral collision suture of the Philippine Eurasian plates: Analysis of geodetic data and geological observation in southeastern Taiwan, Tectonics, 17, 859-871, 1998.
Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, and F. S. Jeng, Continuous monitoring of an active in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan, Tectonophysics, 333, 219-240, 2001.
Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, F. S. Jeng, and R. J. Rau, Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001, J. Geophys. Res., 108(B1), 2528, doi:10.1029/2003JB002394, 2003.
Lee, W. H. K., F. T. Wu, and S. C. Wang, A catalog of instrumentally determined earthquakes in China (magnitude 6 and larger) compiled from various sources, Bull. Seismol. Soc. Am., 68, 383-398, 1978.
Lisowski, M., and W. H. Prescott, Short-range distance measurements along the San Andreas fault system in central California, 1975-1979, Bull. Seismol. Soc. Am., 71, 1607-1624, 1981.
Liu, C. C. and S. B. Yu, Vertical crustal deformations in eastern Taiwan and its tectonic implications, Tectonophysics, 183, 111-119, 1990.
Lovenbruck, A., R. Cattin, X. Le Pichon, M. L. Courty, and S. B. Yu, Seismic cycle in Taiwan derived from GPS measurements, Comptes Rendus De L' Academie Des Sciences, 333, 57-64, 2001.
Malavieille, J., S. E. Lallemand, S. Dominguez, A. Deschamps, C. Y. Lu, C. S. Liu, P. Schnürle, and the ACT Scientific Crew, Arc-continent collision in Taiowan: New marine observations and tectonic evolution, Geol. Soc. Am. Spec. Paper, 358, 187-211, 2002.
Marone, C, J. E. Vidale, W. L. Ellsworth, Fault healing inferred from time-dependent variations in source properties of repeating earthquakes, Geophys. Res. Lett., 22, 3095-98, 1995.
Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142, 1993.
Matsubara, M., Y. Yagi, and K. Obara, Plate boundary slip associated with the 2003 Off-Tokachi earthquake based on small repeating earthquake data, Geophys. Res. Lett., 32, doi:10.1029/2004GL022310, 2005.
Matsuzawa, T., T. Igarashi, and A. Hasegawa, Characteristic small-earthquake sequence off Sanriku, northern Honshu, Japan, Geophys. Res. Lett., 29, doi:10.1029/2001GL014632, 2002.
Murray, J., P. Segall, P. Cervelli, W. Prescott, and J. Svarc, Inversion of GPS data for spatially variable slip-rate on the San Andreas Fault near Parkfield, CA, Geophys. Res. Lett., 28 (2), 359-362, 2001.
Nadeau, R. M. and T. V. McEvilly, Seismological studies at Parkfield V: Characteristic microearthquake sequences as fault-zone drilling targets, Bull. Seismol. Soc. Am., 87, 1463-1472, 1997.
Nadeau, R. M. and L. R. Johnson, Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquake, Bull. Seismol. Soc. Am., 88, 790-814, 1998.
Nadeau, R. M. and T. V. McEvilly, Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721, 1999.
Nadeau, R. M. and T. V. McEvilly, Periodic pulsing of characteristic micro-earthquakes on the San Andreas fault, Science, 303, 220-222, 2004.
Nadeau, R., M. Antolik, P. A. Johnson, W. Foxall, and T. V. McEvilly, Seismological studies at Parkfield III: Microearthquake clusters in the study of fault-zone dynamics, Bull. Seismol. Soc. Am., 84, 247-263, 1994.
Nadeau, R. M., W. Foxall, and T. V. McEvilly, Clustering and periodic recurrence of microeartqhuakes on the San Andreas fault at Parkfield, California, Science, 267, 503-507, 1995.
Niu, F., P. G. Silver, R .M. Nadeau, T. V. McEvilly, Stress-induced migration of seismic scatterers associated with the 1993 Parkfield aseismic transient event, Nature, 426, 544-548, 2003.
Peng, Z. and Y. Ben-Zio, Spatio-temporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 Duzce, Turkey, earthquake sequences, Geophys. J. Int., 160, 1027-1043, 2005.
Peng, Z., J. E. Vidale, C. Marone and A. Rubin, Systematic variations in recurrence interval and moment of repeating aftershocks, Geophys. Res. Lett., 32(15), L15301, doi: 10.1029/2005GL022626, 2005.
Rau, R. J., K. H. Chen, and K. E. Ching, Repeating earthquakes and seismic potential along the northern Longitudinal Valley fault of eastern Taiwan, Geophys. Res. Lett., 34, L24301, doi:10.1029/2007GL031622, 2007.
Ross, S. L., A. J. Michael, W. L. Ellsworth, B. Julian, F. Klein, D. Oppenheimer, and K. Richards-Dinger, Effects of initial location error and station distribution on double-difference earthquake relocation: Comparing the San Gregorio and Calaveras faults, Seism. Res. Let., 72291-72292, 2001.
Rubin, A. M., Using Repeating Earthquakes to correct high-precision earthquake catalogs for time-dependent station delays, Bull. Seism. Soc. Am., 92, 1647-1659, 2002.
Rubin, A. M., D. Gillard, and J. L. Got, Streaks of microearthquakes along creeping faults, Nature, 400, 635-641, 1999.
Rubinstein, J. L., N. Uchida, and G. C. Beroza, Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake, J. Geophys. Res., 112, B05315, doi:10.1029/2006JB004440, 2007.
Sandvol, E. and T. Hearn, Bootstrapping shear-wave splitting errors, Bull. Seismol. Soc. Am., 84(6), 1971-1977, 1994.
Sammis, C.G. and J. R. Rice, Repeating earthquakes as low-stress-drop events at a border between locked and creeping fault patches, Bull. Seismol. Soc. Am., 91, 532-537, 2001.
Sammis, C. G., R. M. Nadeau, and L. R. Johnson , How strong is an asperity? J. Geophys. Res., 104, 10,609-10,619, 1999.
Schaff, D. P. and G. C. Beroza, Coseismic and postseismic velocity changes measured by repeating earthquakes, J. Geophys. Res., 109, doi:10.1029/2004JB003011, 2004.
Schaff, D. P., G. C. Beroza, and B. E. Shaw, Postseismic response of repeating aftershocks, Geophys. Res. Lett., 25 (24), 4549-4552, doi:10.1029/1998GL900192, 1998.
Schaff, D. P., G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, and W. L. Ellsworth, High-resolution image of Calaveras Fault seismicity, J. Geophys. Res., 107(B9), 2186, doi:10.1029/2001JB000633, 2002.
Scholz, C. H., The mechanics of earthquakes and faulting, 439 pp., Cambridge Univ. Press, 1990.
Schorlemmer, D., and S. Wiemer, Microseismicity data forecast rupture area, Nature, 434, 1086, 2005.
Snoke, J. A., J. W. Munsey, A. G. Teague, and G. A. Bollinger, A Program for Focal Mechanism Determination by Combined Use of Polarity and SV-P Amplitude Data, Earthquake Notes, 55, 15 pp, 1984.
Suppe, J., Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89, 1981.
Suppe, J., Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33, 1984.
Taiwan Weather Bureau, The 1951 earthquake report, 83 pp., Taiwan Whether Bureau, Taipei, 1952. (in Chinese)
Tajima, F. and H. Kanamori, Global survey of aftershock area expansion patterns, Phys. Earth Planet. Inter., 40, 77-134, 1985.
Templeton, D., R. M. Nadeau, and R. Bürgmann, Behavior of repeating earthquake sequences in central California and the implications for subsurface fault creep, Bull. Seismol. Soc. Am., submitted, 2007.
Titus, S. J., C. DeMets, and B. Tikoff, Thirty-five-year creep rates for the creeping segment of the San Andreas fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creep meters, Bull. Seismol. Soc. Am., 96(4), S250-S268, 2006.
Toda, S., and R. S. Stein, Response of the San Andreas Fault to the 1983 Coalinga-Nuñez Earthquakes: An application of interaction-based probabilities for Parkfield, J. Geophys. Res., 107(B6), 2126, 10.1029/2001JB000172, 2002.
Tsai, Y. B., Seismotectonics of Taiwan, Tectonophysics, 125, 17-37, 1986.
Turcotte, D. L., Fractals and Chaos in Geology and Geophysics, Cambridge University. Press, 221 pp, Cambridge, 1992.
Uchida, N., T. Matsuzawa, T. Igarashi, and A. Hasegawa, Interplate quasi-static slip off Sanriku, NE Japan, estimated from repeating earthquakes, Geophys. Res. Lett., 30 (15), 1801, doi:10.1029/2003GL017452, 2003.
Uchida, N., T. Matsuzawa, T. Okada, and A. Hasegawa, Distribution and characteristics of small asperities on the plate boundary estimated from small repeating earthquakes, paper presented at Fall Meeting of the Seismological Society of Japan, Seismol. Soc. Jpn., Fukuoka, Japan, 2004.
Uchida, N., T. Matsuzawa, W. L. Ellsworth, K. Imanishi, T. Okada, and A. Hasegawa, Precise estimation of locations, source sizes and stress drops for an M4.9 ‘Characteristic earthquake’ sequence and its accompanying small repeating earthquakes off Kamaishi, NE Japan, Geophys. Res. Lett., submitted, 2007.
Umino, N., T. Kono, T. Okada, J. Nakajima, T. Matsuzawa, N. Uchida, A. Hasegawa, Y. Tamura, and G. Aoki, Revisiting the three M~7 Miyagi-oki earthquakes in the 1930s: Possible seismogenic slip on asperities that were re-ruptured during the 1978 M7.4 Miyagi-oki earthquake, Earth Planets Space, 58 (12), 1587-1592, 2006.
Vidale, J. E., W. L. Ellsworth, A. Cole, and C. Marone, Variations in rupture process with recurrence interval in a repeated small earthquake, Nature, 368, 624-626, 1994.
Working Group on California Earthquake Probabilities (WGCEP), Earthquake probabilities in the San Francisco Bay region: 2002 to 2031, U.S. Geological Survey Open-File Report, 03-214, 2003.
Waldhauser, F., hypoDD -- A program to compute double-difference hypocenter locations, U.S. Geological Survey Open-File Report, 1-113, 2001.
Waldhauser, F. and W. L. Ellsworth, A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am., 90, 1353-1368, 2000.
Waldhauser, F. and W. L. Ellsworth, Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations, J. Geophys. Res., 107, doi:10.1029/2000JB000084, 2002.
Wiemer, S., A software package to analyze seismicity: ZMAP, Seism. Res. Lett., 72, 373-382, 2001.
Wiemer, S. and J. P. Benoit, Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones, Geophys. Res. Lett., 23, 1557-1560, 1996.
Wiemer, S. and K. Katsumata, Spatial variability of seismicity parameters in aftershock zones, J. Geophys. Res., 104, 13135-13151, 1999.
Wu, F. T. , Recent tectonics of Taiwan, J. Phys. Earth, 26, S265-299, 1978.
Wu, F. T., R. J. Rau, and D. Salzberg, Taiwan Orogeny: Thin-skinned or lithospheric collision? Tectonophysics, 274, 191-220, 1997.
Yu, S. B. and L. C. Kuo, Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333, 199-217, 2001.
Yu, S. B., D. D. Jackson, G. K. Yu, and C. C. Liu, Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan, Tectonophysics, 183, 97-109, 1990.
Yu, S. B., H. Y. Chen, and L. C. Kuo. Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59, 1997.
Zöeller, G., S. Hainzl, M. Holschneider, and Y. Ben-Zion, Aftershocks resulting from creeping sections in a heterogeneous fault, Geophys. Res. Lett., 32, L03308, doi:10.1029/2004GL021871, 2005a.
Zöller, G., M. Holscheider, and Y. Ben-Zion, The role of heterogeneities as a tuning parameters of earthquake dynamics, Pure Appl. Geophys., 162, 1077-1111, doi:10.1007/s00024-004-2662-7, 2005b.