| 研究生: |
王姿丰 Wang, Tzu-Feng |
|---|---|
| 論文名稱: |
研究運動之保護效應抵抗脂多醣所引發的多巴胺神經元退化現象 Study the protective effects of exercise against LPS-induced dopaminergic neuron degerneration |
| 指導教授: |
郭余民
Kuo, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 跑步機運動 、脂多醣 、多巴胺神經元 、神經退化 |
| 外文關鍵詞: | Treadmill running exercise, lipopolysaccharide, dompminergic neuron, neurodegeneration |
| 相關次數: | 點閱:92 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多的神經退化性疾病,例如阿茲海默氏症與帕金森氏症,於發病過程中神經性發炎反應和小膠細胞之活化是非常常見的。帕金森氏症主要的病理特徵是位在中腦黑質區之多巴胺神經元選擇性的大量退化。相對來說,身體運動對於大腦有許多的好處,例如,大腦損傷後的保護,尤其是在其後的大腦功能恢復。過去發現到於週邊系統給予脂多醣可以啟動初級免疫反應,接連的於腦內引發小膠細胞之活化和多巴胺神經元退化。跑步運動可以減少脂多醣所引發的多巴胺神經元退化現象。不過,現在仍然不知道其所利用的機制為何。所以,在此假設跑步運動之所以可以保護黑質區的多巴胺神經元對抗脂多醣所引發的神經退化現象是因為以下兩個原因:第一,減少週邊和中樞神經系統中因為脂多醣所引發的發炎反應。第二,增加神經滋養因子而開啟的神經存活訊息傳遞路徑。為了驗證以上的假設,本實驗利用公的八週大 C57BL/6 小鼠進行四週的跑步機運動,隨後腹腔內注射脂多醣。發現到跑步基運動不能減少脂多醣刺激下產生的細胞激素(cytokines) 以及趨化素(chemokines)。跑步機運動-脂多醣處理可以顯著性增加腦神經滋養因子(BDNF)於黑質的表現量,但並不改變神經膠細胞滋養因子(GDNF)的表現量。為了研究跑步機運動的保護作用是否經由 BDNF 及其接受器(TrkB)的訊息傳遞路徑。於跑步機運動後,於側腦室內注射 K252a,Trk B 阻斷劑。 結果顯示阻斷 BDNF-TrkB 的訊息傳遞路徑會消除掉跑步機運動保護多巴胺神經元對抗脂多醣所引發的神經退化現象。再進一步驗證,利用微量滲透壓幫浦直接將 BDNF 注射至紋狀體,也同樣的可以減少脂多醣所引發的多巴胺神經退化現象。總結以上結果,跑步機運動可以保護黑質中的多巴胺神經元對抗週邊內脂多醣引發之傷害,而 BDNF-TrkB 訊息傳遞路徑可能包含在跑步機運動的保護效應中。
Neuroinflammation and microglia activation is a common component of the pathogenesis for multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease (PD). PD is characterized by a progressive and selective degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). On the contrary, physical exercise has beneficial effects on brain function, such as protection after brain damages, especially in terms of recovery of brain function. Previously, the lipopolysaccharide (LPS) administration is known to initiate the innate inflammation response in the periphery which subsequently induces microglia activation and DA neuron degeneration in the brain. Running exercise has been shown to reduce LPS-induced DA neuron degeneration. However, the underlying mechanism remains unclear. Therefore, I hypothesize that running exercise protecting DA neuron against LPS-induced degeneration in SN is due to 1) reducing peripheral LPS-induced CNS inflammatory responses, and 2) increasing the neurotrophic pro-survival signaling pathways. To test these hypotheses, 8-week-old C57BL/6 male mice were subjected to a 4-week treadmill running (TR) exercise followed by an intraperitoneal injection of LPS; TR did not reduce the levels of LPS-stimulated cytokines and chemokines in the SN. The levels of the brain-derived neurotrophic factor (BDNF) but not the glial cell derived neurotrophic factor (GDNF) were reduced by LPS treatment and TR significantly enhanced the expression of BDNF. To investigate the effect of BDNF-TrkB pathway on the TR-induced protection, K252a, a Trk B antagonist, was intracerebroventricular injected after four weeks of TR. The results showed that inhibition of BDNF-TrkB pathway abolished the TR-induced protection against LPS-induced DA neuron degeneration. Furthermore, intrastriatal perfused with BDNF with osmotic pump also reduced the LPS-induced DA neuron degeneration. Taken together, TR is able to protect DA neuron in SN against peripheral LPS-induced injury. The BDNF-TrkB signaling is involved in the TR-induced protection.
Abou-Sleiman, P.M., Muqit, M.M., and Wood, N.W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 7, 207-219.
Al-Jarrah, M., Pothakos, K., Novikova, L., Smirnova, I.V., Kurz, M.J., Stehno-Bittel, L., and Lau, Y.S. (2007). Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of parkinsonism with severe neurodegeneration. Neuroscience 149, 28-37.
Babior, B.M. (1999). NADPH oxidase: an update. Blood 93, 1464-1476.
Baquet, Z.C., Bickford, P.C., and Jones, K.R. (2005). Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J. Neurosci. 25, 6251-6259.
Baquet, Z.C., Williams, D., Brody, J., and Smeyne, R.J. (2009). A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 161, 1082-1090.
Batchelor, P.E., Liberatore, G.T., Wong, J.Y., Porritt, M.J., Frerichs, F., Donnan, G.A., and Howells, D.W. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 19, 1708-1716.
Batchelor, P.E., Porritt, M.J., Martinello, P., Parish, C.L., Liberatore, G.T., Donnan, G.A., and Howells, D.W. (2002). Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting Toward but Not beyond the Wound Edge. Mol. Cell. Neurosci. 21, 436-453.
Beck, K.D., Valverde, J., Alexi, T., Poulsen, K., Moffat, B., Vandlen, R.A., Rosenthal, A., and Hefti, F. (1995). Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373, 339-341.
Benmansour, S., Deltheil, T., Piotrowski, J., Nicolas, L., Reperant, C., Gardier, A.M., Frazer, A., and David, D.J. (2008). Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents. Eur. J. Pharmacol. 587, 90-98.
Block, M.L., Wu, X., Pei, Z., Li, G., Wang, T., Qin, L., Wilson, B., Yang, J., Hong, J.S., and Veronesi, B. (2004). Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 18, 1618-1620.
Blum-Degen, D., Muller, T., Kuhn, W., Gerlach, M., Przuntek, H., and Riederer, P. (1995). Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci. Lett. 202, 17-20.
Boka, G., Anglade, P., Wallach, D., Javoy-Agid, F., Agid, Y., and Hirsch, E.C. (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett. 172, 151-154.
Brodacki, B., Staszewski, J., Toczylowska, B., Kozlowska, E., Drela, N., Chalimoniuk, M., and Stepien, A. (2008). Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci. Lett. 441, 158-162.
Chang, Y.T., Chen, Y.C., Wu, C.W., Yu, L., Chen, H.I., Jen, C.J., and Kuo, Y.M. (2008). Glucocorticoid signaling and exercise-induced downregulation of the mineralocorticoid receptor in the induction of adult mouse dentate neurogenesis by treadmill running. Psychoneuroendocrinology 33, 1173-1182.
Chao, C.C., Hu, S., Molitor, T.W., Shaskan, E.G., and Peterson, P.K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149, 2736-2741.
Chinta, S.J., and Andersen, J.K. (2008). Redox imbalance in Parkinson's disease. Biochim. Biophys. Acta 1780, 1362-1367.
Cohen, A.D., Tillerson, J.L., Smith, A.D., Schallert, T., and Zigmond, M.J. (2003). Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J. Neurochem. 85, 299-305.
Cotman, C.W., and Berchtold, N.C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295-301.
Datta, S.C., and Opp, M.R. (2008). Lipopolysaccharide-induced increases in cytokines in discrete mouse brain regions are detectable using Luminex xMAP technology. J. Neurosci. Methods 175, 119-124.
Dauer, W., and Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron 39, 889-909.
Devi, S.A., and Kiran, T.R. (2004). Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol. Aging 25, 501-508.
Dobbs, R.J., Charlett, A., Purkiss, A.G., Dobbs, S.M., Weller, C., and Peterson, D.W. (1999). Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol. Scand. 100, 34-41.
Dobrossy, M.D., and Dunnett, S.B. (2003). Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp. Neurol. 184, 274-284.
Driver, J.A., Kurth, T., Buring, J.E., Gaziano, J.M., and Logroscino, G. (2008). Parkinson disease and risk of mortality: a prospective comorbidity-matched cohort study. Neurology 70, 1423-1430.
Elkabes, S., DiCicco-Bloom, E.M., and Black, I.B. (1996). Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16, 2508-2521.
Erridge, C., Bennett-Guerrero, E., and Poxton, I.R. (2002). Structure and function of lipopolysaccharides. Microbes Infect 4, 837-851.
Faherty, C.J., Raviie Shepherd, K., Herasimtschuk, A., and Smeyne, R.J. (2005). Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res. Mol. Brain Res. 134, 170-179.
Fahn, S. (2003). Description of Parkinson's disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 991, 1-14.
Farrer, M.J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7, 306-318.
Gao, H.M., Jiang, J., Wilson, B., Zhang, W., Hong, J.S., and Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem. 81, 1285-1297.
Georgievska, B., Kirik, D., and Bjorklund, A. (2004). Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J. Neurosci. 24, 6437-6445.
Gibb, J., Hayley, S., Gandhi, R., Poulter, M.O., and Anisman, H. (2008). Synergistic and additive actions of a psychosocial stressor and endotoxin challenge: Circulating and brain cytokines, plasma corticosterone and behavioral changes in mice. Brain. Behav. Immun. 22, 573-589.
Gomez-Pinilla, F., So, V., and Kesslak, J.P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise. Neuroscience 85, 53-61.
Henderson, C.E., Phillips, H.S., Pollock, R.A., Davies, A.M., Lemeulle, C., Armanini, M., Simmons, L., Moffet, B., Vandlen, R.A., Simpson, L.C., and et al. (1994). GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062-1064.
Hong, J.S. (2005). Role of inflammation in the pathogenesis of Parkinson's disease: models, mechanisms, and therapeutic interventions. Ann. N. Y. Acad. Sci. 1053, 151-152.
Huang, A.M., Jen, C.J., Chen, H.F., Yu, L., Kuo, Y.M., and Chen, H.I. (2006). Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J. Neural Transm. 113, 803-811.
Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., and Hirsch, E.C. (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355-363.
Hunot, S., Dugas, N., Faucheux, B., Hartmann, A., Tardieu, M., Debre, P., Agid, Y., Dugas, B., and Hirsch, E.C. (1999). FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 19, 3440-3447.
Hyman, C., Hofer, M., Barde, Y.A., Juhasz, M., Yancopoulos, G.D., Squinto, S.P., and Lindsay, R.M. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230-232.
Jack, C.S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A., and Antel, J.P. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320-4330.
Kang, J.M., Jung, J.C., Kim, H., Lim, H., Jang, S., and Oh, S. (2008). Neuroprotective effect of benzylideneacetophenone derivative on the MPTP model of neurodegeneration in mice. Arch. Pharm. Res. 31, 1098-1107.
Kearns, C.M., and Gash, D.M. (1995). GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res. 672, 104-111.
Kim, S.U., and de Vellis, J. (2005). Microglia in health and disease. J. Neurosci. Res. 81, 302-313.
Knott, C., Stern, G., and Wilkin, G.P. (2000). Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci. 16, 724-739.
Knusel, B., and Hefti, F. (1992). K-252 compounds: modulators of neurotrophin signal transduction. J. Neurochem. 59, 1987-1996.
Kreutzberg, G.W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-318.
Langston, J.W., Ballard, P., Tetrud, J.W., and Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979-980.
Langston, J.W., and Ballard, P.A., Jr. (1983). Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N. Engl. J. Med. 309, 310.
Lee, J.K., Tran, T., and Tansey, M.G. (2009). Neuroinflammation in Parkinson's Disease. J Neuroimmune Pharmacol.
Leng, A., Mura, A., Feldon, J., and Ferger, B. (2005). Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson's disease. Neurosci. Lett. 375, 107-111.
Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132.
Ling, Z., Gayle, D.A., Ma, S.Y., Lipton, J.W., Tong, C.W., Hong, J.S., and Carvey, P.M. (2002). In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov. Disord. 17, 116-124.
Ling, Z., Zhu, Y., Tong, C., Snyder, J.A., Lipton, J.W., and Carvey, P.M. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199, 499-512.
Liu, B., Gao, H.M., and Hong, J.S. (2003). Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ. Health Perspect. 111, 1065-1073.
Liu, Y., Qin, L., Wilson, B., Wu, X., Qian, L., Granholm, A.C., Crews, F.T., and Hong, J.S. (2008). Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 29, 864-870.
Liu, Y.F., Chen, H.I., Wu, C.L., Kuo, Y.M., Yu, L., Huang, A.M., Wu, F.S., Chuang, J.I., and Jen, C.J. (2009). Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587, 3221-3231.
Loeliger, M.M., Briscoe, T., and Rees, S.M. (2008). BDNF increases survival of retinal dopaminergic neurons after prenatal compromise. Invest. Ophthalmol. Vis. Sci. 49, 1282-1289.
Mattson, M.P., Maudsley, S., and Martin, B. (2004). A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 3, 445-464.
McGeer, P.L., Itagaki, S., Boyes, B.E., and McGeer, E.G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291.
McGeer, P.L., and McGeer, E.G. (2004). Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord 10 Suppl 1, S3-7.
McNeill, T.H., and Koek, L.L. (1990). Differential effects of advancing age on neurotransmitter cell loss in the substantia nigra and striatum of C57BL/6N mice. Brain Res. 521, 107-117.
Mendez, J.S., and Finn, B.W. (1975). Use of 6-hydroxydopamine to create lesions in catecholamine neurons in rats. J. Neurosurg. 42, 166-173.
Mizuno, Y., Hattori, N., Kitada, T., Matsumine, H., Mori, H., Shimura, H., Kubo, S., Kobayashi, H., Asakawa, S., Minoshima, S., and Shimizu, N. (2001). Familial Parkinson's disease. Alpha-synuclein and parkin. Adv. Neurol. 86, 13-21.
Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M., and Nagatsu, T. (1994a). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147-150.
Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M., and Nagatsu, T. (1996). Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett. 211, 13-16.
Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K., and Nagatsu, T. (1994b). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208-210.
Murer, M.G., Yan, Q., and Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog. Neurobiol. 63, 71-124.
Nagata, K., Takei, N., Nakajima, K., Saito, H., and Kohsaka, S. (1993). Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. J. Neurosci. Res. 34, 357-363.
Nagatsu, T., and Sawada, M. (2006). Cellular and molecular mechanisms of Parkinson's disease: neurotoxins, causative genes, and inflammatory cytokines. Cell. Mol. Neurobiol. 26, 781-802.
Nakajima, K., and Kohsaka, S. (2004). Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4, 65-84.
Nakamura, Y. (2002). Regulating factors for microglial activation. Biol. Pharm. Bull. 25, 945-953.
Neeper, S.A., Gomez-Pinilla, F., Choi, J., and Cotman, C.W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49-56.
Olanow, C.W., and Tatton, W.G. (1999). Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123-144.
Oliff, H.S., Berchtold, N.C., Isackson, P., and Cotman, C.W. (1998). Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res. Mol. Brain Res. 61, 147-153.
Oppenheim, R.W., Houenou, L.J., Johnson, J.E., Lin, L.F., Li, L., Lo, A.C., Newsome, A.L., Prevette, D.M., and Wang, S. (1995). Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344-346.
Orr, C.F., Rowe, D.B., and Halliday, G.M. (2002). An inflammatory review of Parkinson's disease. Prog. Neurobiol. 68, 325-340.
Owen, A.D., Schapira, A.H., Jenner, P., and Marsden, C.D. (1996). Oxidative stress and Parkinson's disease. Ann. N. Y. Acad. Sci. 786, 217-223.
Pascual, A., Hidalgo-Figueroa, M., Piruat, J.I., Pintado, C.O., Gomez-Diaz, R., and Lopez-Barneo, J. (2008). Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat. Neurosci. 11, 755-761.
Perry, V.H. (2004). The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain. Behav. Immun. 18, 407-413.
Petzinger, G.M., Walsh, J.P., Akopian, G., Hogg, E., Abernathy, A., Arevalo, P., Turnquist, P., Vuckovic, M., Fisher, B.E., Togasaki, D.M., and Jakowec, M.W. (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. 27, 5291-5300.
Plas, D.R., and Thompson, C.B. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24, 7435-7442.
Poulsen, K.T., Armanini, M.P., Klein, R.D., Hynes, M.A., Phillips, H.S., and Rosenthal, A. (1994). TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13, 1245-1252.
Przedborski, S., and Vila, M. (2003). The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann. N. Y. Acad. Sci. 991, 189-198.
Qin, L., Li, G., Qian, X., Liu, Y., Wu, X., Liu, B., Hong, J.S., and Block, M.L. (2005). Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52, 78-84.
Qin, L., Liu, Y., Wang, T., Wei, S.J., Block, M.L., Wilson, B., Liu, B., and Hong, J.S. (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279, 1415-1421.
Qin, L., Wu, X., Block, M.L., Liu, Y., Breese, G.R., Hong, J.S., Knapp, D.J., and Crews, F.T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462.
Ransohoff, R.M., and Perry, V.H. (2009). Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119-145.
Rentzos, M., Nikolaou, C., Andreadou, E., Paraskevas, G.P., Rombos, A., Zoga, M., Tsoutsou, A., Boufidou, F., Kapaki, E., and Vassilopoulos, D. (2009). Circulating interleukin-10 and interleukin-12 in Parkinson's disease. Acta Neurol. Scand. 119, 332-337.
Rosenblad, C., Georgievska, B., and Kirik, D. (2003). Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur. J. Neurosci. 17, 260-270.
Sairanen, M., Lucas, G., Ernfors, P., Castren, M., and Castren, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089-1094.
Sajadi, A., Bauer, M., Thony, B., and Aebischer, P. (2005). Long-term glial cell line-derived neurotrophic factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and increase of tetrahydrobiopterin production. J. Neurochem. 93, 1482-1486.
Schaar, D.G., Sieber, B.A., Dreyfus, C.F., and Black, I.B. (1993). Regional and cell-specific expression of GDNF in rat brain. Exp. Neurol. 124, 368-371.
Schefer, V., and Talan, M.I. (1996). Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387-392.
Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-225.
Siamilis, S., Jakus, J., Nyakas, C., Costa, A., Mihalik, B., Falus, A., and Radak, Z. (2009). The effect of exercise and oxidant-antioxidant intervention on the levels of neurotrophins and free radicals in spinal cord of rats. Spinal Cord 47, 453-457.
Son, J.H., Chun, H.S., Joh, T.H., Cho, S., Conti, B., and Lee, J.W. (1999). Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J. Neurosci. 19, 10-20.
Storch, A., Ludolph, A.C., and Schwarz, J. (2004). Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J. Neural Transm. 111, 1267-1286.
Streit, W.J., Walter, S.A., and Pennell, N.A. (1999). Reactive microgliosis. Prog. Neurobiol. 57, 563-581.
Stromberg, I., Bjorklund, L., Johansson, M., Tomac, A., Collins, F., Olson, L., Hoffer, B., and Humpel, C. (1993). Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp. Neurol. 124, 401-412.
Tajiri, N., Yasuhara, T., Shingo, T., Kondo, A., Yuan, W., Kadota, T., Wang, F., Baba, T., Tayra, J.T., Morimoto, T., et al. (2009). Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res.
Tanner, C.M. (2003). Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies. Adv. Neurol. 91, 133-142.
Tapley, P., Lamballe, F., and Barbacid, M. (1992). K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7, 371-381.
Tillerson, J.L., Caudle, W.M., Reveron, M.E., and Miller, G.W. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience 119, 899-911.
Tomac, A., Lindqvist, E., Lin, L.F., Ogren, S.O., Young, D., Hoffer, B.J., and Olson, L. (1995). Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335-339.
Van Den Eeden, S.K., Tanner, C.M., Bernstein, A.L., Fross, R.D., Leimpeter, A., Bloch, D.A., and Nelson, L.M. (2003). Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015-1022.
Widenfalk, J., Olson, L., and Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci. Res. 34, 125-132.
Wiley, R.G., Harrison, M.B., Levey, A.I., and Lappi, D.A. (2003). Destruction of midbrain dopaminergic neurons by using immunotoxin to dopamine transporter. Cell. Mol. Neurobiol. 23, 839-850.
Wu, C.W., Chang, Y.T., Yu, L., Chen, H.I., Jen, C.J., Wu, S.Y., Lo, C.P., and Kuo, Y.M. (2008). Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J. Appl. Physiol. 105, 1585-1594.
Wu, C.W., Chen, Y.C., Yu, L., Chen, H.I., Jen, C.J., Huang, A.M., Tsai, H.J., Chang, Y.T., and Kuo, Y.M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J. Neurochem. 103, 2471-2481.
Wymann, M.P., and Pirola, L. (1998). Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127-150.
Yan, Q., Matheson, C., and Lopez, O.T. (1995). In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373, 341-344.
Yokoyama, H., Takagi, S., Watanabe, Y., Kato, H., and Araki, T. (2008). Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J. Neural Transm. 115, 831-842.
Yoon, M.C., Shin, M.S., Kim, T.S., Kim, B.K., Ko, I.G., Sung, Y.H., Kim, S.E., Lee, H.H., Kim, Y.P., and Kim, C.J. (2007). Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats. Neurosci. Lett. 423, 12-17.