簡易檢索 / 詳目顯示

研究生: 吳胤平
Wu, Yin-Ping
論文名稱: 新的二氧化碳捕捉及再利用方法用於高爐煉鐵製程
Novel CO2 capture and utilization approach for ironmaking in blast furnace
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 145
中文關鍵詞: 高爐 燃料電池電解槽二氧化碳捕捉再利用多聯產Aspen Plus®
外文關鍵詞: Blast furnace, fuel cell, electrolyzer, CO2 capture and utilization system (CCU), polygeneration, Aspen Plus
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球鋼鐵產業的生產過程中,關於二氧化碳的直接排放量佔全球7-9%,特別在煉鐵製程上為主要的碳排放來源,而二氧化碳加劇全球溫室效應的影響,因此如何有效處理高爐在煉鐵製程的碳排放為重要的議題。本研究之目標為利用高爐結合燃料電池、電解槽與二氧化碳再利用系統,達到減少碳排放且生產具經濟價值的產品。
    本研究透過結合Aspen Plus與FactSage軟體模擬高爐、燃料電池、電解槽與二氧化碳再利用系統的流程,並以文獻提供之真實數據進行驗證,且採用相關電化學數學模型與模擬結果達到一致性。另外在多聯產的情境分析上,為了符合製程上最佳的操作條件,也利用敏感度與設計規格分析達到流程上的優化。
    本研究在處理相同高爐排放之二氧化碳流量下,設計出兩種不同多聯產情境,並透過相關指標分析比較出較佳的多聯產設計,最後得出在S1情境下有較佳的操作效益,相較於一般高爐結合燃氣渦輪發電每產生1kW的電力時,能夠有效減少33%的二氧化碳排放並產出約300公斤/每噸鐵水的甲醇,且達到能量自我供應平衡與能量轉換效率為30.9%,證明以S1情境的多聯產設計具備優異的產品效益且能夠減少高爐的碳排放。

    The iron and steel industry discharges 7-9% of the world’s CO2 emissions. Especially, the ironmaking process accounts for 85% CO2 emissions under the traditional iron and steel process. Then, this situation aggravates CO2 emissions and causes greenhouse effect. This is an important issue that effectively deals with CO2 reduction for ironmaking in blast furnace.

    Therefore, the target of this study is to use fuel cell, electrolyzer, carbon capture and utilization systems (CCU) with blast furnace, which can reduce CO2 emissions and produce economic products. Meanwhile, we simulate the process of blast furnace, fuel cell, electrolyzer, and CCU systems by Aspen Plus and FactSage, which validates the simulation result by reference plant data.

    Two different polygeneration scenarios under the same CO2 input from blast furnace are designed to compare the best one by CO2 emissions and index. In conclusion, it is indicated that the scenario 1 has the most efficient solution to reduce 33% CO2 emissions per kW provided, the methanol production rate is about 300 kg/tHM and energy conversion efficiency is about 30.9%. Through this kind of polygeneration, blast furnace not only can reduce the CO2 emissions but also can bring out the product benefits compared to direct CO2 emissions.

    摘要 I 誌謝 XII 目錄 XIV 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1.1前言 1 1.2二氧化碳捕捉方法與高爐排放之爐頂氣 2 1.3燃料電池與電解槽系統結合多聯產程序 4 1.4研究動機與目標 7 第二章 高爐煉鐵模型建立與驗證 9 2.1高爐煉鐵製程介紹 9 2.2高爐模型建立方法之文獻回顧 11 2.3高爐模型的建置與方法 15 2.3.1成份與熱力學方法 15 2.3.2熱力學參數補充與驗證 15 2.3.3高爐模型模擬假設與限制條件 19 2.3.4高爐模型建置流程 20 2.4高爐模型文獻數據驗證 26 第三章 多聯產理論與模型建立 34 3.1燃料電池與電解槽模型之方法與反應器 35 3.1.1 燃料電池與電解槽模型之熱力學方法 36 3.1.2 各物質物理性質 37 3.1.3重組反應熱力學及反應器 38 3.1.4燃料電池尾氣燃燒反應器 39 3.1.5電解槽中水電解與共電解反應器 39 3.2燃料電池與電解槽原理與材質 40 3.2.1燃料電池與電解槽模型之假設 45 3.2.2燃料電池與電解槽電化學數學模型 45 3.3燃料電池與電解槽效率計算與模式操作 51 3.4燃料電池與電解槽模型建立與驗證 59 3.4.1燃料電池模型建立與驗證 60 3.4.2電解槽模型建立與水電解驗證 64 3.4.3電解槽模型建立與共電解驗證 68 3.5生產甲醇模型建立與驗證 75 3.5.1不同合成甲醇方法之熱力學模型 76 3.5.2甲醇反應器之觸媒與動力式 77 3.5.3甲醇反應器之設計及組成與內部溫度分佈驗證 80 3.5.4純化甲醇之蒸餾塔設計與熱力學模型 87 3.6純化與分離二氧化碳之真空變壓吸附裝置 89 第四章 多聯產程序不同情境之結果分析 92 4.1不同燃料處理與能源使用情境 92 4.2不同多聯產情境能耗與碳排放計算 96 4.2.1高爐碳排放量與真空變壓吸附裝置之能耗計算 96 4.2.2電解槽進行共/水電解的電壓與能耗效率計算 99 4.2.3 STM/CTM法下甲醇反應器的入料條件與能耗計算 101 4.2.4純化甲醇之蒸餾塔與回流設計的能耗計算 104 4.2.5燃料電池利用COG氣體發電與能耗效率計算 107 4.2.6熱整合與熱回收效率計算 110 4.3 COG氣體結合燃氣渦輪發電與總碳排放量計算 114 4.4不同情境下的總碳排放量與指標比較分析 119 第五章 結論 128 參考文獻 130 附錄A 141

    [1] J. Song, Z. Jiang, C. Bao, and A. Xu, "Comparison of energy consumption and CO2 emission for three steel production routes—Integrated steel plant equipped with blast furnace, oxygen blast furnace or COREX," metals, vol. 9, no. 3, p. 364, 2019.
    [2] 葉肇檉, "中鋼公司節能減碳之管理與作法," 10/01 2008.
    [3] M. Bailera, P. Lisbona, B. Peña, and L. M. Romeo, "A review on CO2 mitigation in the Iron and Steel industry through Power to X processes," Journal of CO2 Utilization, vol. 46, p. 101456, 2021.
    [4] 中央研究院, "台灣深度減碳政策建議書," 中央研究院, 201906 2019.
    [5] C. Yilmaz, J. Wendelstorf, and T. Turek, "Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions," Journal of Cleaner Production, vol. 154, pp. 488-501, 2017.
    [6] C. Yilmaz and T. Turek, "Modeling and simulation of the use of direct reduced iron in a blast furnace to reduce carbon dioxide emissions," Journal of Cleaner Production, vol. 164, pp. 1519-1530, 2017.
    [7] K. Suzuki, K. Hayashi, K. Kuribara, T. Nakagaki, and S. Kasahara, "Quantitative evaluation of CO2 emission reduction of active carbon recycling energy system for ironmaking by modeling with aspen plus," Isij International, vol. 55, no. 2, pp. 340-347, 2015.
    [8] M. A. Quader, S. Ahmed, R. A. R. Ghazilla, S. Ahmed, and M. Dahari, "Evaluation of criteria for CO2 capture and storage in the iron and steel industry using the 2-tuple DEMATEL technique," Journal of Cleaner Production, vol. 120, pp. 207-220, 2016.
    [9] A. Arasto, E. Tsupari, J. Kärki, J. Lilja, and M. Sihvonen, "Oxygen blast furnace with CO2 capture and storage at an integrated steel mill—Part I: Technical concept analysis," International Journal of Greenhouse Gas Control, vol. 30, pp. 140-147, 2014.
    [10] 楊閎舜 and 周正堂, "變壓吸附程序在二氧化碳捕獲技術之發展與研究," 化工, vol. 63, no. 1, pp. 83-97, 2016.
    [11] R. Andika, A. B. D. Nandiyanto, Z. A. Putra, M. R. Bilad, Y. Kim, C. M. Yun, and M. Lee, "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, vol. 95, pp. 227-241, 2018.
    [12] C. F. Machado, J. L. de Medeiros, O. F. Araújo, and R. M. Alves, "A comparative analysis of methanol production routes: synthesis gas versus CO2 hydrogenation," in Proceedings of the 2014 international conference on industrial engineering and operations management, Bali, Indonesia, 2014, pp. 7-9.
    [13] D. S. Marlin, E. Sarron, and Ó. Sigurbjörnsson, "Process advantages of direct CO2 to methanol synthesis," Frontiers in chemistry, p. 446, 2018.
    [14] F. Schultmann, B. Engels, and O. Rentz, "Flowsheeting-based simulation of recycling concepts in the metal industry," Journal of Cleaner Production, vol. 12, no. 7, pp. 737-751, 2004.
    [15] N. Müller, G. Herz, E. Reichelt, and M. Jahn, "CO 2 emission reduction potential in the steel industry by integration of a direct reduction process into existing steel mills," Challenges For Petrochemicals and Fuels: Integration of Value Chains and Energy Transition, Berlin, pp. 187-196, 2018.
    [16] O. Almpanis-Lekkas, W. Wukovits, and B. Weiss, "Development of an industrial iron-making melter gasifier model with multiphase equilibrium calculations," Chemical Engineering Transactions, vol. 39, pp. 823-828, 2014.
    [17] P. Bosse, "Mathematisches Hochofenmodell zur Untersuchung der Austauschbarkeit von Koks durch Ersatzreduktionsmittel (Mathematical blast furnace model to investigate the replaceability of coke by auxiliary reducing agents)," TU Clausthal, Clausthal-Zellerfeld, Germany, 2003.
    [18] A. Babich, K. Ohno, D. Senk, H. Gudenau, P. Kowitwarangkul, Y. Ueki, and M. Shimizu, "Use of charcoal, biomass and waste plastics for reducing CO2 emission in ironmaking," World Iron & Steel, p. 03, 2012.
    [19] Q. Hou, E. Dianyu, S. Kuang, Z. Li, and A. Yu, "DEM-based virtual experimental blast furnace: A quasi-steady state model," Powder technology, vol. 314, pp. 557-566, 2017.
    [20] M. Chu, H. Nogami, and J.-i. Yagi, "Numerical analysis on injection of hydrogen bearing materials into blast furnace," ISIJ international, vol. 44, no. 5, pp. 801-808, 2004.
    [21] H. Yamaoka and Y. Kamei, "Theoretical study on an oxygen blast furnace using mathematical simulation model," ISIJ international, vol. 32, no. 6, pp. 701-708, 1992.
    [22] V. M. Gasparini, L. F. A. d. Castro, V. E. d. S. Moreira, A. C. B. Quintas, A. O. Viana, and D. H. B. Andrade, "Impact of operational parameters on fuel consumption of a blast furnace," REM-International Engineering Journal, vol. 70, pp. 465-470, 2017.
    [23] J. Adilson de Castro, G. A. d. Medeiros, E. M. d. Oliveira, M. F. de Campos, and H. Nogami, "The mini blast furnace process: An efficient reactor for green pig iron production using Charcoal and Hydrogen-Rich Gas: A Study of Cases," Metals, vol. 10, no. 11, p. 1501, 2020.
    [24] P. Pianko-Oprych and M. Palus, "Simulation of SOFCs based power generation system using Aspen," Polish Journal of Chemical Technology, vol. 19, no. 4, pp. 8-15, 2017.
    [25] Z. Pan, Q. Liu, L. Zhang, J. Zhou, C. Zhang, and S. H. Chan, "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied energy, vol. 191, pp. 559-567, 2017.
    [26] G. Cinti, G. Discepoli, G. Bidini, A. Lanzini, and M. Santarelli, "Co‐electrolysis of water and CO2 in a solid oxide electrolyzer (SOE) stack," International Journal of Energy Research, vol. 40, no. 2, pp. 207-215, 2016.
    [27] R. Razzaq, C. Li, and S. Zhang, "Coke oven gas: availability, properties, purification, and utilization in China," Fuel, vol. 113, pp. 287-299, 2013.
    [28] J. Bermúdez, A. Arenillas, and J. Menéndez, "Equilibrium prediction of CO2 reforming of coke oven gas: suitability for methanol production," Chemical engineering science, vol. 82, pp. 95-103, 2012.
    [29] W. Zhang, E. Croiset, P. L. Douglas, M. Fowler, and E. Entchev, "Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models," Energy Conversion and Management, vol. 46, no. 2, pp. 181-196, 2005.
    [30] "Current Fuel Cell Technology," ed. America: Air Conditioning, Heating and Refrigeration Institute, 2006.
    [31] P. Kazempoor and R. Braun, "Model validation and performance analysis of regenerative solid oxide cells for energy storage applications: Reversible operation," international journal of hydrogen energy, vol. 39, no. 11, pp. 5955-5971, 2014.
    [32] A. Buttler, R. Koltun, R. Wolf, and H. Spliethoff, "A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production," International journal of hydrogen energy, vol. 40, no. 1, pp. 38-50, 2015.
    [33] F. R. Bianchi and B. Bosio, "Operating principles, performance and technology readiness level of reversible solid oxide cells," Sustainability, vol. 13, no. 9, p. 4777, 2021.
    [34] V. Eveloy, "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, vol. 108, pp. 550-571, 2019.
    [35] M. Ni, M. K. Leung, and D. Y. Leung, "Parametric study of solid oxide steam electrolyzer for hydrogen production," International Journal of Hydrogen Energy, vol. 32, no. 13, pp. 2305-2313, 2007.
    [36] M. Hauck, S. Herrmann, and H. Spliethoff, "Simulation of a reversible SOFC with Aspen Plus," International Journal of Hydrogen Energy, vol. 42, no. 15, pp. 10329-10340, 2017.
    [37] F. Lonis, V. Tola, and G. Cau, "Renewable methanol production and use through reversible solid oxide cells and recycled CO2 hydrogenation," Fuel, vol. 246, pp. 500-515, 2019.
    [38] F. C. Handbook, "EG&G Technical Services, Inc," US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory-Morgantown, West Virginia, 2004.
    [39] J. Ferguson, J. M. Fiard, and R. Herbin, "Three-dimensional numerical simulation for various geometries of solid oxide fuel cells," Journal of Power Sources, vol. 58, no. 2, pp. 109-122, 1996.
    [40] F. Calise, A. Palombo, and L. Vanoli, "Design and partial load exergy analysis of hybrid SOFC–GT power plant," Journal of power sources, vol. 158, no. 1, pp. 225-244, 2006.
    [41] J. Schwenzel, V. Thangadurai, and W. Weppner, "Developments of high-voltage all-solid-state thin-film lithium ion batteries," Journal of power sources, vol. 154, no. 1, pp. 232-238, 2006.
    [42] K. Im-orb, N. Visitdumrongkul, D. Saebea, Y. Patcharavorachot, and A. Arpornwichanop, "Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production," Journal of Cleaner Production, vol. 170, pp. 1-13, 2018.
    [43] K. R. Cox and W. G. Chapman, "The Properties of Gases and Liquids, By Bruce E. Poling (University of Toledo), John M. Prausnitz (University of California at Berkeley), and John P. O'Connell (University of Virginia). McGraw-Hill: New York. 2001. 768 pp. $115.00. ISBN 0-07-011682-2," ed: ACS Publications, 2001.
    [44] R. E. Cunningham and R. Williams, Diffusion in gases and porous media. Springer, 1980.
    [45] P. Di Giorgio and U. Desideri, "Potential of reversible solid oxide cells as electricity storage system," Energies, vol. 9, no. 8, p. 662, 2016.
    [46] X. Sun, M. Chen, S. H. Jensen, S. D. Ebbesen, C. Graves, and M. Mogensen, "Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells," International journal of hydrogen energy, vol. 37, no. 22, pp. 17101-17110, 2012.
    [47] W. Doherty, A. Reynolds, and D. Kennedy, "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, vol. 35, no. 12, pp. 4545-4555, 2010.
    [48] Z. Pan, W. P. Chan, A. Veksha, A. Giannis, X. Dou, H. Wang, G. Lisak, and T.-T. Lim, "Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation," Energy Conversion and Management, vol. 202, p. 112160, 2019.
    [49] A. Tiesma, "Simulation of CO2 capture and conversion into methanol using Aspen Plus and the design of an adaptive communication tool for the development of a shared vision within interdisciplinary virtual institutes," 2021.
    [50] L. Lücking, "Methanol Production from Syngas: Process modelling and design utilising biomass gasification and integrating hydrogen supply," 2017.
    [51] A. A. Kiss, J. Pragt, H. Vos, G. Bargeman, and M. De Groot, "Novel efficient process for methanol synthesis by CO2 hydrogenation," Chemical engineering journal, vol. 284, pp. 260-269, 2016.
    [52] M. D. Hilliard, "A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas," PhD Thesis, 2008.
    [53] J. Gross and G. Sadowski, "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules," Industrial & engineering chemistry research, vol. 40, no. 4, pp. 1244-1260, 2001.
    [54] K. V. Bussche and G. Froment, "A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst," Journal of catalysis, vol. 161, no. 1, pp. 1-10, 1996.
    [55] G. Towler and R. Sinnott, Chemical engineering design: principles, practice and economics of plant and process design. Butterworth-Heinemann, 2021.
    [56] J. Ott, V. Gronemann, F. Pontzen, E. Fiedler, G. Grossmann, D. B. Kersebohm, G. Weiss, and C. Witte, "Methanol," Ullmann's encyclopedia of industrial chemistry, 2000.
    [57] R.-Y. Chein, W.-H. Chen, H. C. Ong, P. L. Show, and Y. Singh, "Analysis of methanol synthesis using CO2 hydrogenation and syngas produced from biogas-based reforming processes," Chemical Engineering Journal, vol. 426, p. 130835, 2021.
    [58] R. Reid, J. Prausnitz, and B. Poling, "Diffusion coefficients for binary gas systems at low pressures: Empirical correlations," The Properties of Gases and Liquids, 4th ed. London: McGraw-Hill, pp. 586-589, 1988.
    [59] Aspen Tutorial #6: Aspen Distillation (RadFrac Distillation). 2004, p. 17.
    [60] P. Jin, Z. Jiang, C. Bao, S. Hao, and X. Zhang, "The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace," Resources, Conservation and Recycling, vol. 117, pp. 58-65, 2017.
    [61] C. Shen, Z. Liu, P. Li, and J. Yu, "Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads," Industrial & Engineering Chemistry Research, vol. 51, no. 13, pp. 5011-5021, 2012.
    [62] L. Wang, Z. Liu, P. Li, J. Wang, and J. Yu, "CO2 capture from flue gas by two successive VPSA units using 13XAPG," Adsorption, vol. 18, no. 5, pp. 445-459, 2012.
    [63] S. S. Khalafalla, U. Zahid, A. G. Abdul Jameel, U. Ahmed, F. S. Alenazey, and C.-J. Lee, "Conceptual design development of coal-to-methanol process with carbon capture and utilization," Energies, vol. 13, no. 23, p. 6421, 2020.
    [64] H.-Y. Chen and J.-C. Jeng, "Integration of hydrogen production and greenhouse gas treatment by utilizing nitrogen oxide as sweep gas in a solid oxide electrolysis cell," Journal of the Taiwan Institute of Chemical Engineers, vol. 130, p. 103937, 2022.
    [65] H. R. Godini, M. Khadivi, M. Azadi, O. Görke, S. M. Jazayeri, L. Thum, R. Schomäcker, G. Wozny, and J.-U. Repke, "Multi-scale analysis of integrated c1 (CH4 and CO2) utilization catalytic processes: Impacts of catalysts characteristics up to industrial-scale process flowsheeting, part i: Experimental analysis of catalytic low-pressure co2 to methanol conversion," Catalysts, vol. 10, no. 5, p. 505, 2020.
    [66] R. Rivera-Tinoco, M. Farran, C. Bouallou, F. Auprêtre, S. Valentin, P. Millet, and J. Ngameni, "Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction," International journal of hydrogen energy, vol. 41, no. 8, pp. 4546-4559, 2016.
    [67] X. Jin, A. Ku, B. Ohara, K. Huang, and S. Singh, "Performance analysis of a 550MWe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas," Energy, vol. 222, p. 119917, 2021.
    [68] R. Scaccabarozzi, M. Gatti, S. Campanari, and E. Martelli, "Solid oxide semi-closed CO2 cycle: A hybrid power cycle with 75% net efficiency and zero emissions," Applied Energy, vol. 290, p. 116711, 2021.
    [69] B. Maes, "Exploring Aspen Energy Analyser to improve Processes Global Energy Efficiency," Master, Chemical Engineering, Instituto Superior Técnico, Portugal, 2018.
    [70] J. Dicampli, L. Madrigal, P. Pastecki, and J. Schornick, "Aeroderivative power generation with coke oven gas," in ASME International Mechanical Engineering Congress and Exposition, 2012, vol. 45226: American Society of Mechanical Engineers, pp. 403-408.
    [71] Office of Fossil Energy and Carbon Management, How Gas Turbine Power Plants Work. Available: https://www.energy.gov/fecm/how-gas-turbine-power-plants-work(2022).
    [72] S. Kim, M. Kim, Y. T. Kim, G. Kwak, and J. Kim, "Techno-economic evaluation of the integrated polygeneration system of methanol, power and heat production from coke oven gas," Energy Conversion and Management, vol. 182, pp. 240-250, 2019.
    [73] C. Shi, M. Elgarni, and N. Mahinpey, "Process design and simulation study: CO2 utilization through mixed reforming of methane for methanol synthesis," Chemical Engineering Science, vol. 233, p. 116364, 2021.
    [74] M. T. Luu, D. Milani, A. Bahadori, and A. Abbas, "A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies," Journal of CO2 Utilization, vol. 12, pp. 62-76, 2015.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE